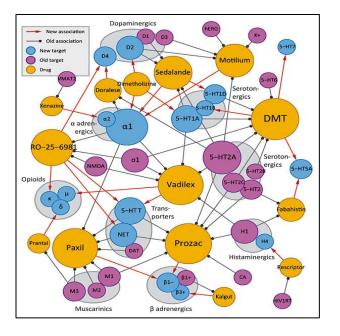
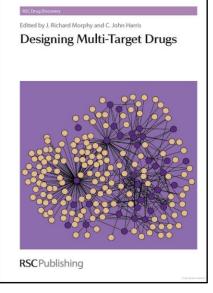
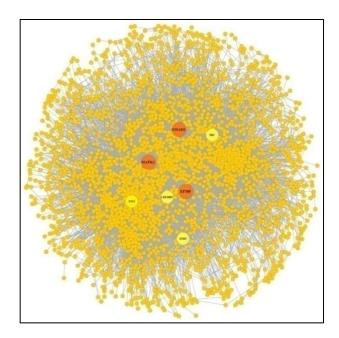
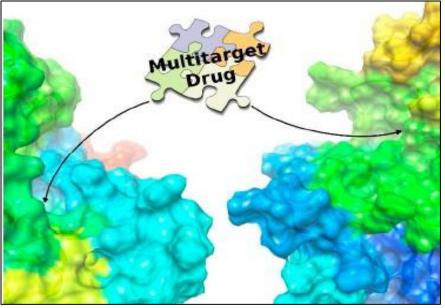
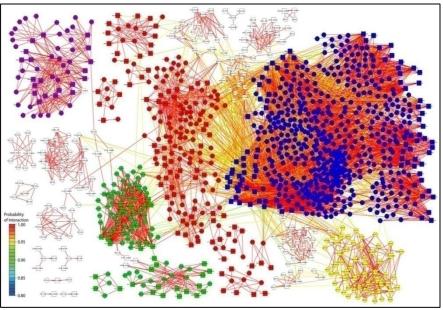
Volgograd State Medical University Vorozhtsov Institute of Organic Chemistry

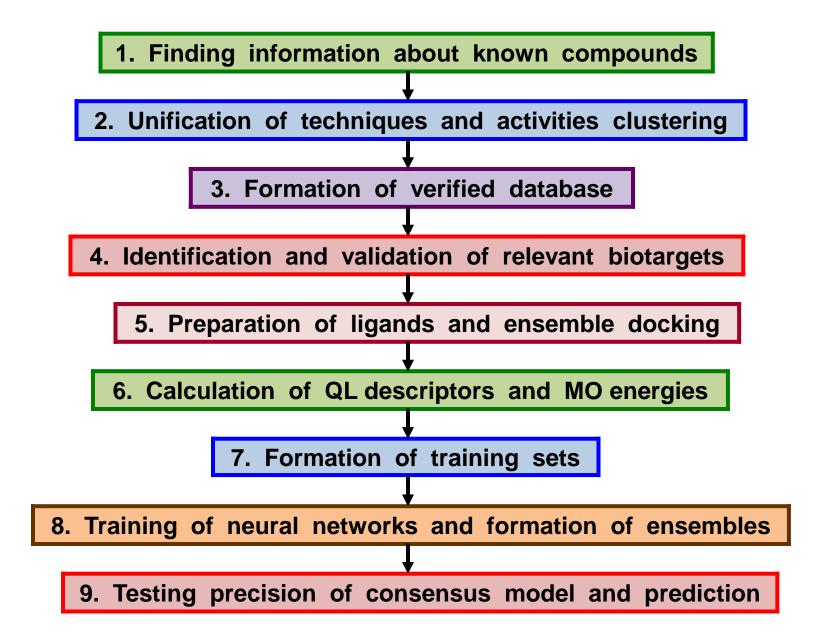


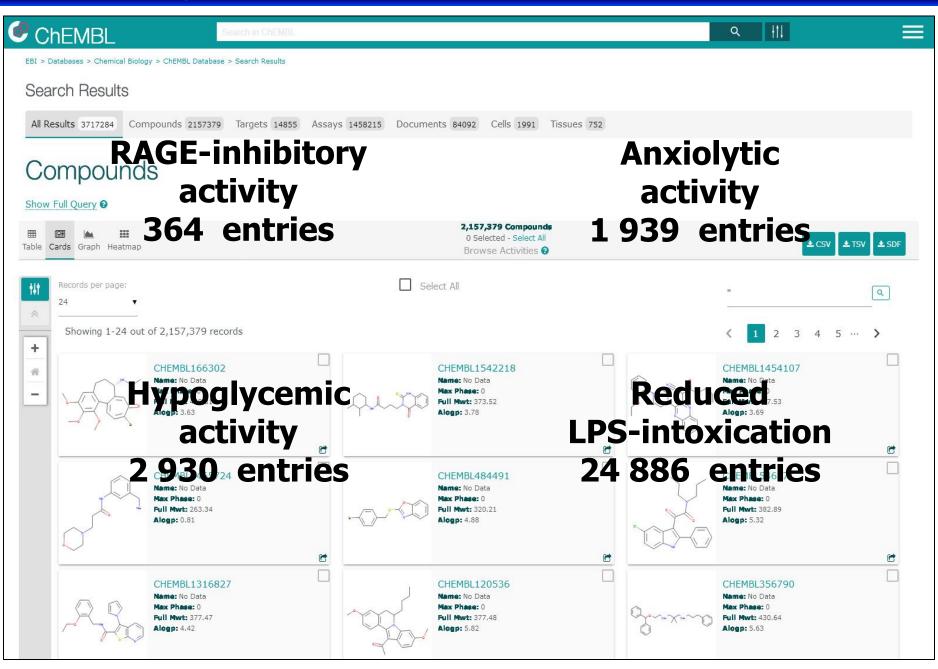


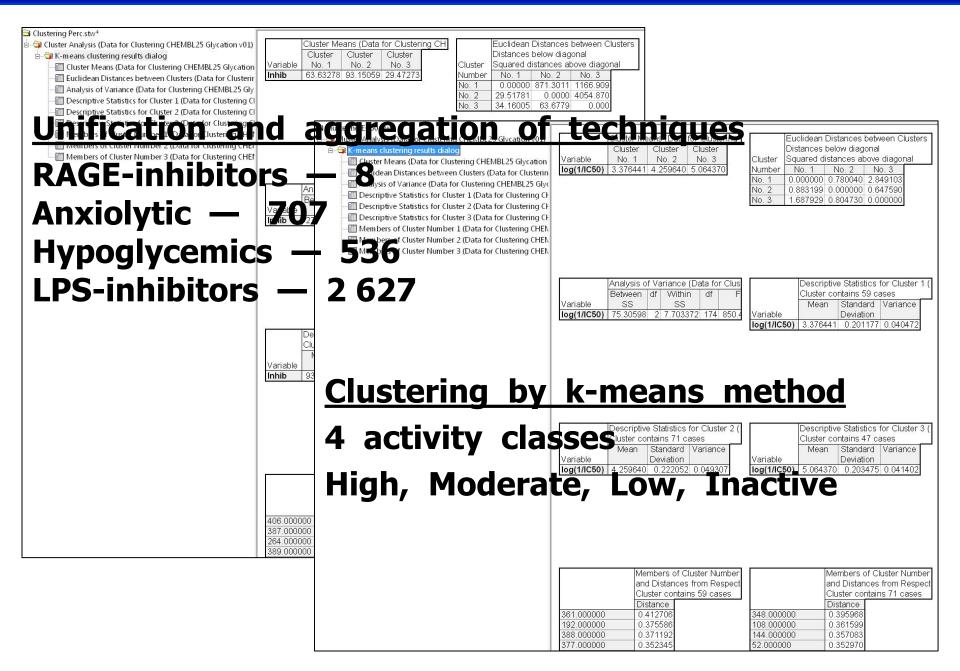

THE CONSENSUS ENSEMBLE MULTIDESCRIPTOR MULTITARGET NEURAL NETWORK MODELING OF PHARMACOLOGICAL ACTIVITY OF CHEMICAL COMPOUNDS


Vassiliev Pavel Mikhailovich


All drugs are multitarget

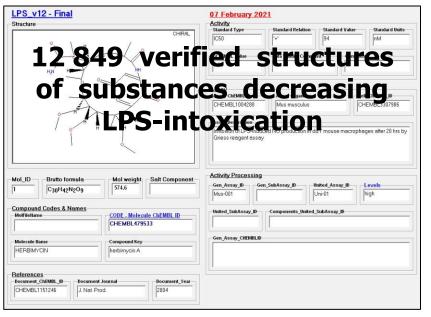




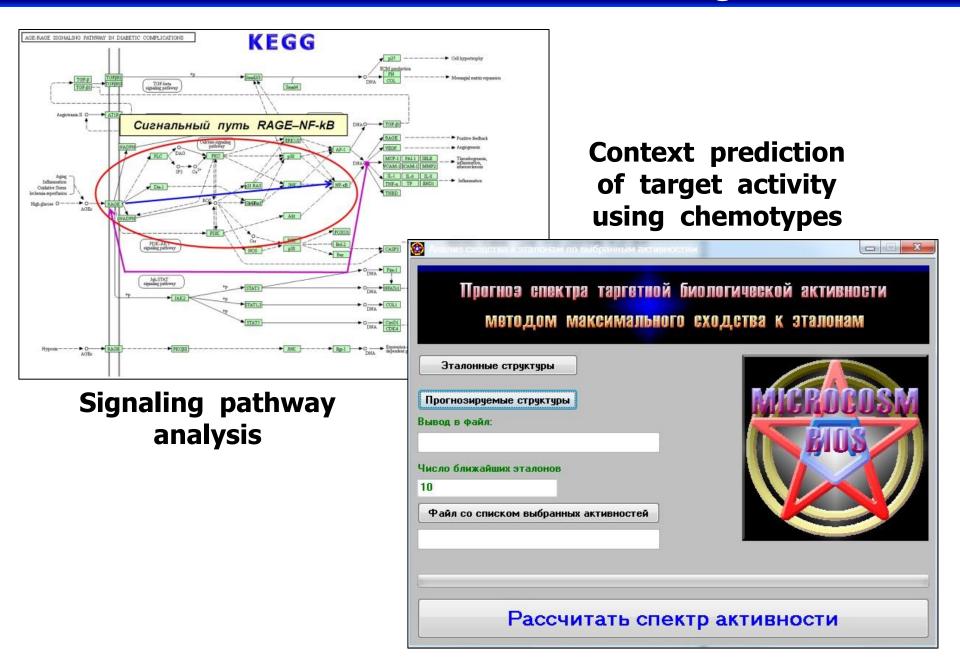

General model building workflow

Finding information about known compounds

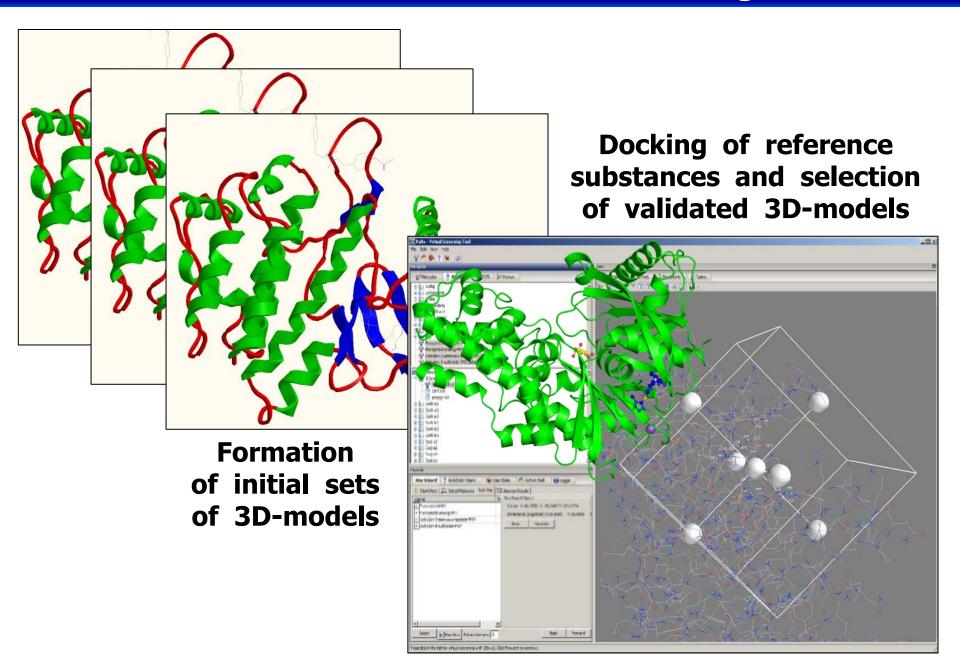
Unification of techniques and activities clustering



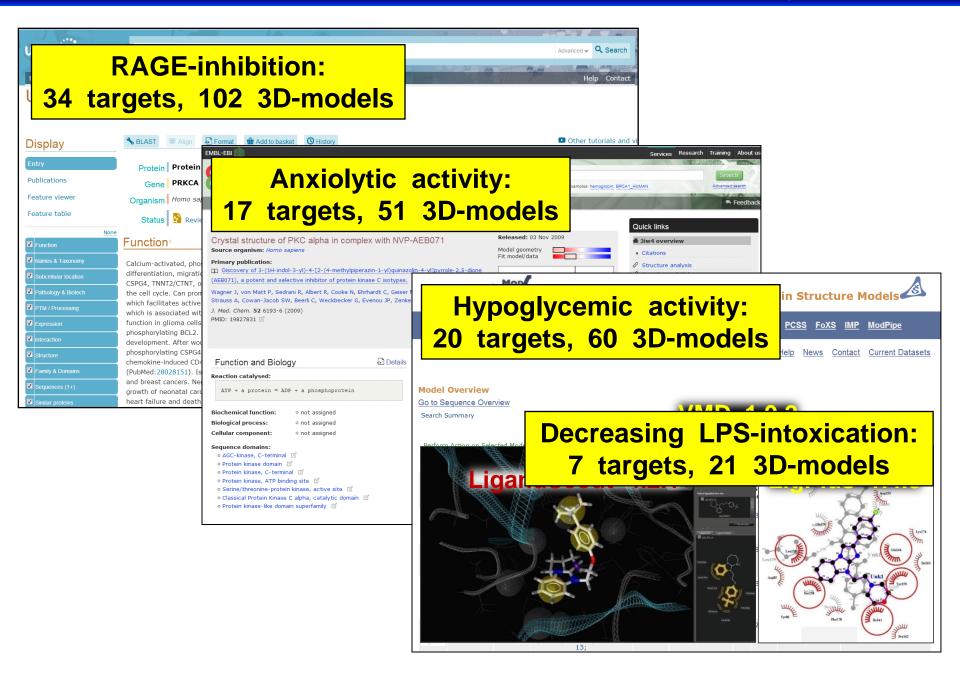
Formation of verified databases


RAGE Antac	L 83	ve	rifie	10 May 2018 Activity 15647770 STANDARD_TYPE STANDARD_VALLE STANDARD 15647770 Inhibition 20.6 %	D_UNITS
		F_R/	AGE	-inhibitors	
) formula	Molweight	Salt Component	Inhibition of human RAGE-emyloid bate-42 interaction at 4 uM preincubated for 30 mins measured after 1 hr by FRET assay relation control	ve to
COMPOUND_KEY - Coc	121CIN2O3	420.8 MOL_PREF_NAME	 		
9 CMPD_CHEMBLID CHEMBL3594424	MOLREGNO 1953029	ALOGP 5.06	PSA 56.52	Activity Processing Gen_Assay_Ds Levels moderate	
References and Comments				-Oen_Assay_CHEMELD	
Bioorg. Med. Cher	n. (2015) 23:15:49	19			

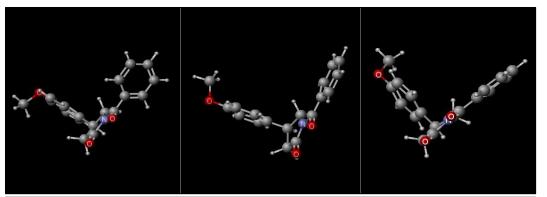
Identification of relevant biotargets



Searching standard compounds

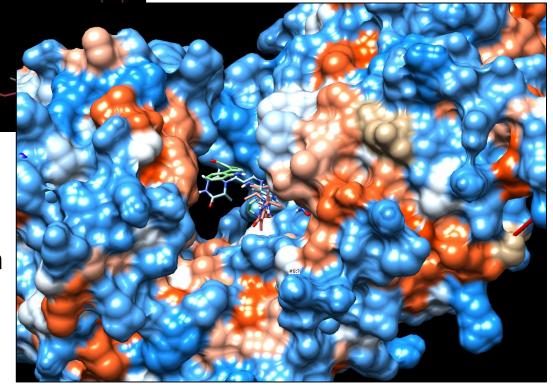

	Advanced Search:		uno Portal Malaria Portal Search GtoPdb ds Chemical Structure ad our release notes blog		tion of similarity
Catalytic receptors Transporters Enzymes Other protein targets Ligands Approved drugs Synthect organics Metabolites Hatural products Endogenous peptides Other profiles Inorganics Antbodies Labelled ligands	WCP 2023	Pharmacology of COVID-19 Thered includes IUPHAR Review 23: A rational roadmap for SAR3-CoV- 2/COVID-19 pharmacotherapeutic research and development, which made the cover of the issue	Прогноз сп	inactive o нактра тарготной би	compounds
Resources Help documentation FAQ Tutorial Downbad data & reports REST web services Recent Twitter activity Bory, this content is unavailable unter	VC2 mail which is why COVID is age- decine in human performance with ag requiring Read more + 1 month ago Hot Topics: Endothetin-1 pathway, COVID-19 SARS-COV-2 gains entry into the bod	ed, a of absolutely precise. Inneed to loss of related. A new study (1) shows that the ge at 5000 m, an atmetic event a new therapeutic target for ly making via the lungs. After entering to infect nearly cells. Endotherias cells	Эталонные структур Прогнозируемые струк Вывод в файл: Число ближайших этало 10	стуры	MICROCOSM
activ	tion of kr ve referer ompounds	nce	Файл со списком выб	ранных активностей	

Рассчитать спектр активности

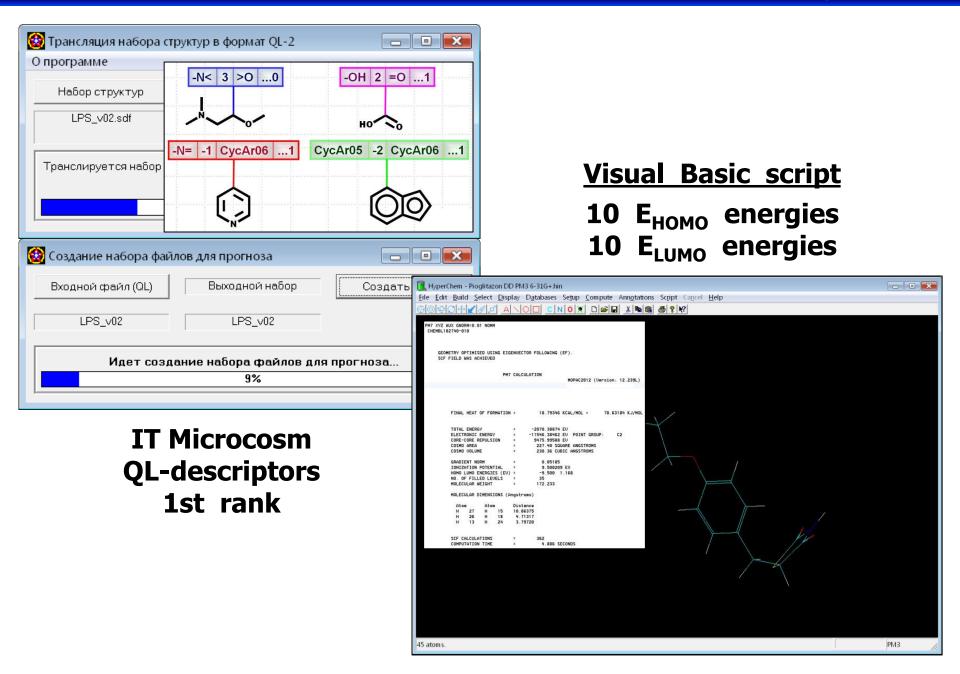

Validation of 3D-models of biotargets

Validated 3D-models of relevant biotargets

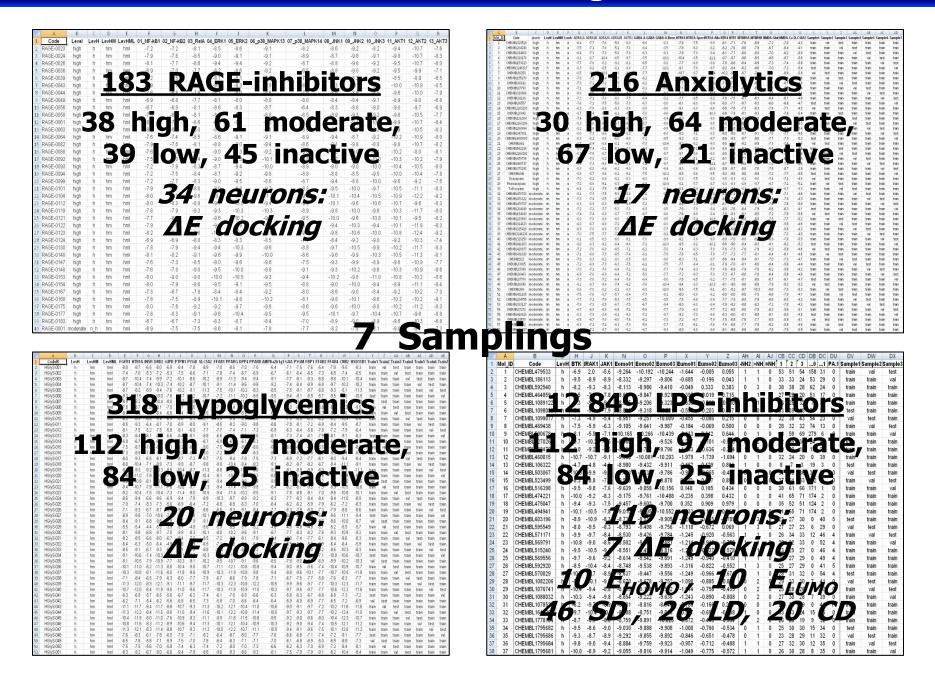
Preparation of ligands and ensemble docking


Each ligand in each 3D-model 5 times in 10 conformations $\Delta E_{ij} = min(\Delta E_{ijkl})$ $\sim 138\ 000\ 000$

docking energies

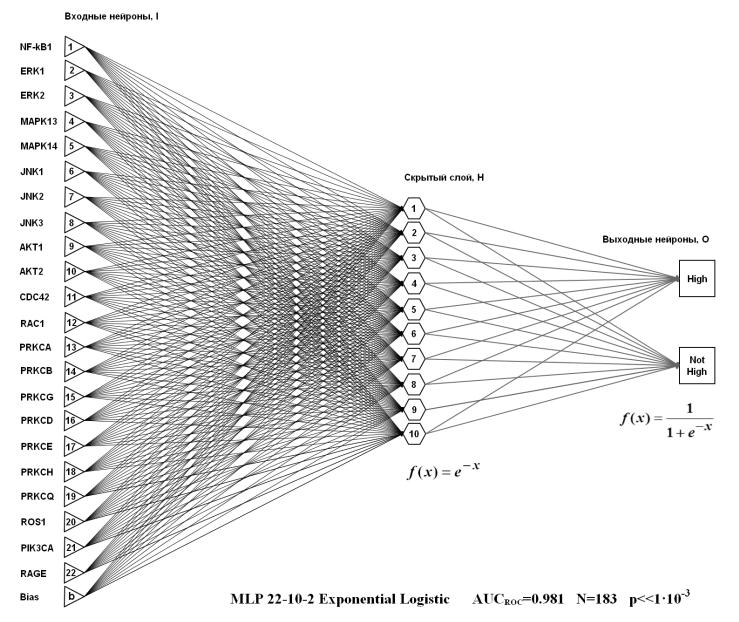

Molecular mechanics 10 conformers

Quantum chemistry PM7 Optimization and selection of the best conformation

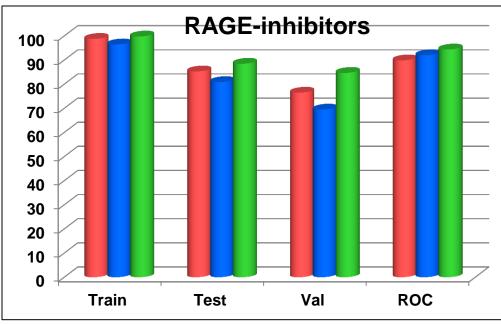

~1 300 000 conformers

Calculation of QL descriptors and MO energies

Formation of training sets

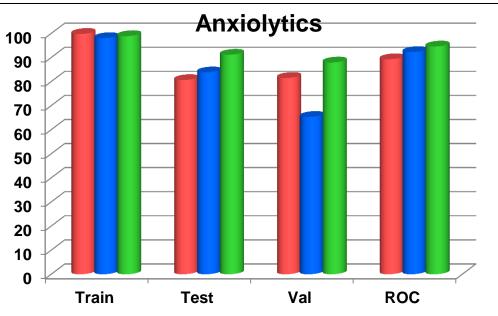


Training of neural networks and formation of ensembles

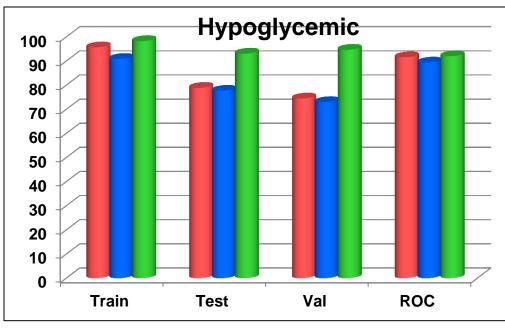

Net	Net. name	Training	Test p	Algorit	Error fu	Hidden	Output		
1	MLP 22-1	78.811565	80.555	BECS 14	SOS	Tanh	Logistic		E
2	MLP 22-1		Sam	Didea	G os O	Digter (d)	Lisjistic		
3	MLP 22-1	79.591837	80.555	BFGS 14 DFGS 15	SOS	Exponen	Tanh		
4 5	MLP 22-1		eaci		CEIVII		ever		
5 6	MLP 22-9-2	78.911565	80.555	BFGS 9	SOS	Tanh	Logistic		~
	1000								
	4000) selectary	ane	d n	eura	al ne	etewe	Drks	
	network traini	ing in progr	ess		-		-		
aul		ing in progr	ess	sele	cted	⁹ⁱ ħe	ural	ne	
aul	etwork traini	ing in progr tica L be mble	ess Ilyr 4 est est	sele neuj of <u>utp</u>	cted ral r	petw	ural /ork net	N <u>e</u> xt Finish	<u>k</u> s
aul	etwork traini	ing in progr tica L be mble	ess Ilyr 4 est est	sele neuj of <u>utp</u>	cted ral r	pine netw	ural /ork net	N <u>e</u> xt Finish	<u>k</u> s

An example of a neural network architecture

RAGE-inhibition from docking energies for 34 biotargets

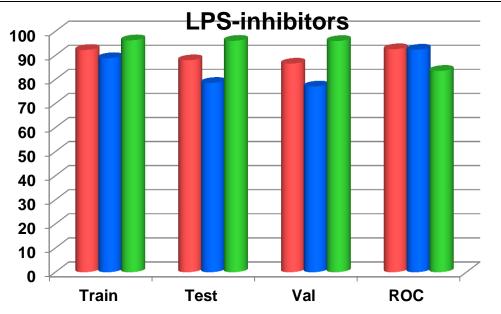


Accuracy of neural network ensembles

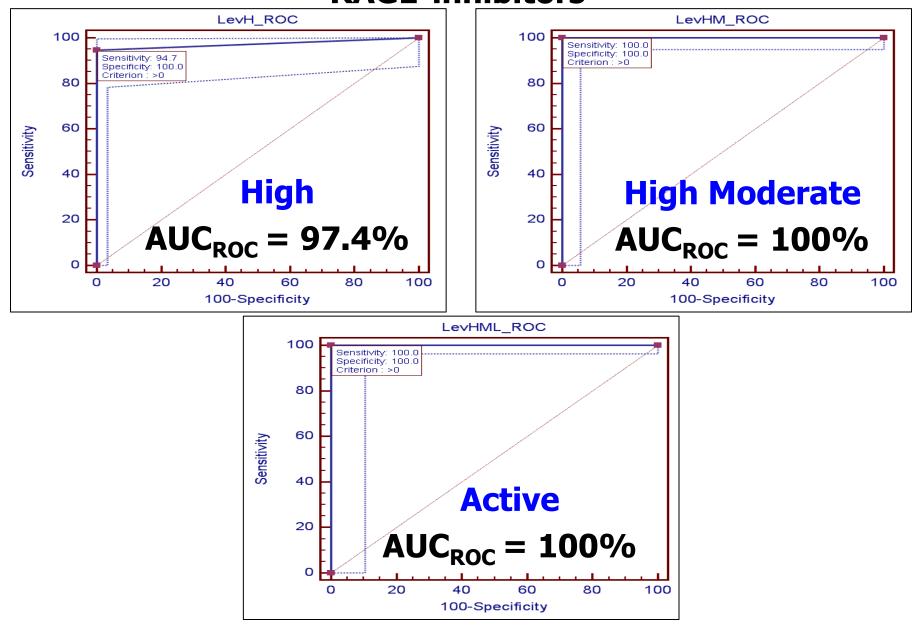


Activity	Accuracy, %										
level	Train	Test	Val	ROC							
RAGE-inhibitory activity											
High	98.8	85.3	76.5	89.9							
High or Moderate	96.5	80.9	69.5	92.0							
Active	99.8	88.5	84.7	94.4							

Activity	Accuracy, %									
level	Train	Test	Val	ROC						
Anxiolytic activity	/									
High	99.8	80.6	81.5	89.3						
High or Moderate	98.1	83.8	65.3	92.3						
Active	98.9	91.2	87.9	94.6						



Accuracy of neural network ensembles


Activity	Accuracy, %											
level	Train	Test	Val	ROC								
Hypoglycemic activity												
High	95.7	78.9	74.5	91.6								
High or Moderate	90.9	77.7	73.0	89.4								
Active	98.3	93.1	94.7	92.0								

Activity	Accuracy, %												
level	Train	Test	Val	ROC									
Decreased LPS-intoxication													
High	92.3	88.0	86.6	92.6									
High or Moderate	88.9	78.6	77.1	92.4									
Active	96.3	96.1	96.0	83.6									

ROC analysis of a consensus neural network model

RAGE-inhibitors

Consensus prediction of RAGE-inhibitory activity

First level consensus — simple vote

4	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S
1	Code	Sampl1	Sampl2	Sampl3	Sampl4	Sampl5	Sampl6	Sampl7	Ind1	Ind2	Ind3	Ind4	Ind5	Ind6	Ind7	Cons>=4	Cons>=5	Cons>=6	Cons=7
2	10	n_h	n_h	n_h	h	n_h	n_h	n_h				1							
3	11	n_h	n_h	h	h	h	h	h			1	1	1	1	1	h	h		
4	14080	n_h	h	n_h	n_h	n_h	n_h	h		1					1				
5	14086	n_h	h	n_h	n_h	n_h	n_h	n_h		1									
6	14087	n_h																	
7	14091	n_h	n_h	n_h	n_h	n_h	n_h	h							1				
8	14093	h	n_h	n_h	n_h	n_h	n_h	h	1						1				
9	14102	n_h	h	n_h	n_h	n_h	n_h	n_h		1									
10	14120	n_h	n_h	n_h	n_h	h	n_h	n_h					1						
11	14138	n_h																	
12	14144	n_h																	
13	14160	h	n_h	n_h	n_h	n_h	n_h	h	1						1				
14	14	n_h	n_h	n_h	h	h	n_h	h				1	1		1				
15		n_h																	
	17	n_h																	
17		n_h	n_h	h	n_h	n_h	n_h	n_h			1								
18		h	n_h	n_h	h	n_h	h	n_h	1			1		1					
19		n_h	n_h	h	h	h	n_h	n_h			1	1	1						
	2	n_h																	
21		n_h	n_h	h	h	h	n_h	n_h			1	1	1						
22		n_h	n_h	n_h	h	n_h	n_h	n_h				1							
	38	n_h	n_h	n_h	n_h	n_h	h	h						1	1				
24		n_h																	
25		n_h	n_h	n_h	n_h	n_h	n_h	h							1				
26		n_h	n_h	n_h	h	h	n_h	n_h				1	1						
27		h	n_h	n_h	n_h	n_h	n_h	n_h	1										
	56	n_h	n_h	n_h	h	n_h	h	h				1		1	1				
29		n_h	n_h	h	h	h	h	n_h			1	1	1	1		h			
	7	n_h	n_h	n_h	n_h	n_h	n_h	h							1				
31	Contract of the second s	h	n_h	n_h	n_h	n_h	n_h	n_h	1										
	AB-0016	n_h																	
	AB-0019	n_h																	
	AB-0020	n_h																	
	AB-0045	n_h																	
	AB-0054	n_h																	
	AB-0067	n_h	n_h	n_h	n_h	n_h	n_h	h					_		1				
	AZH-0119	n_h																	
	AZH-0143	n_h	h	h	h	h	h	h		1	1	1	1	1	1	h	h	h	
	BIF-0016	h	n_h	h	h	h	h	h	1		1	1	1	1	1	h	h	h	
	BIF-0023	h	n_h	h	h	h	h	h	1		1	1	1	1	1	h	h	h	
42	BIF-0064	n_h	-		_														

Consensus prediction of RAGE-inhibitory activity

Second level consensus — noncontradiction check

Code	High				HighMod				HighMod	Low			High Full	Consens	us		Moderate Full Consensus			
		Cons>=5	Cons>=6	Cons=7			Cons>=6	Cons=7	Cons>=4	Cons>=5	Cons>=6	Cons=7			Cons>=6	Cons=7	Cons>=4	Cons>=5	Cons>=6	Cons=7
14080					hm	hm			hml	hml	hml	hml					1	1		
14091					hm				hml	hml	hml	hmi					1			
14102					hm	hm	hm	hm	hml	hml	hml	hml					1	1	1	1
23					hm	hm			hml	hml	hml	hml					1	1		
26					hm				hml	hml	hml						1			
35					hm	hm			hml	hml	hml						1	1		
38					hm				hml								1			
5	h				hm				hml	hml	hmi		1							
AZH-0143	h	h	h		hm				hml	hml	hml		1							
K-215					hm	hm	hm	hm	hml	hml							1	1		
SUM-0018					hm	hm	hm		hml	hml	hml						1	1	1	
SUM-0026					hm				hml								1			
TONS-0462	h				hm	hm			hml	hml			1					1		
Osha01					hm	hm			hml	hml							1	1		
Osha02					hm	hm	hm		hml	hml	hml						1	1	1	
Osha03					hm	hm	hm		hml	hml	hml						1	1	1	
Osha04					hm	hm	hm		hml	hml	hml						1	1	1	
0sha07	h	h	h		hm	hm	hm		hml	hml	hml	hml	1	1	1					
Osha10	1940				hm	hm	hm	hm	hml								1			
Osha11	h	h	h		hm	hm	hm	hm	hml	hml	hml	hml	1	1	1					1
Osha12					hm				hml	hml							1			
Osha21					hm	hm	hm	hm	hml	hml	hml						1	1	1	
0sha22	h				hm				hml	hml			1							
Osha26					hm				hml	hml							1			
0shi09	h				hm	hm			hml	hml	hml		1					1		
0shi10	h	h	h		hm	hm	hm	hm	hml	hml	hml		1	1	1					
0shi11	h				hm	hm			hml	hml	hml		1					1	1	
Oshi12					hm	hm			hml	hml	hml	hml					1	1		
Oshi21					hm	hm			hml	hml	hml						1	1		
Oshi37					hm	hm	hm		hml	hml	hml	hml					1	1	1	
1sha30	h	h			hm	hm			hml	hml	hml		1	1						
1sha35					hm	hm			hml					1			1			
1sha36					hm				hml	hml	hml						1			
1sha44					hm	hm	hm		hml	hml	hml	hml					1	1	1	
1sha45					hm	hm			hml	hml							1	1		
1sha46					hm	hm			hml	hml	hml						1	1		
1sha53	h	h	h	h	hm	hm	hm		hml	hmi	hmi	hmi	1	1	1					
1shadr01	h				hm	hm			hml	hml	hml	hmi	1		1			1		

high = h & hm & a moderate = nh & hm & a low = nh & nhm & a inactive = nh & nhm & na incorrect = h & nhm & a incorrect = h & nhm & na incorrect = nh & hm & na ... et cetera **Creative team**

P.M. Vassiliev A.A. Spasov **D.A. Babkov D.V. Maltsev A.N. Kochetkov M.A.** Perfilev A.R. Koroleva A.V. Golubeva **O.A.** Luzina

Acknowledgments

The research was supported by the following grants: **RFBR Nº 18-015-00499 RFBR Nº 20-015-00164 RSF Nº 20-013-00029 Ministry of Education and Science** of the Russian Federation Nº 075-15-20-777

