Computational Studies on Green Pesticides

Netaly Khazanov, Shahaf Kozokaro, Lina Iktelat, Omer Kaspi, Paul Clarke, Hanoch Senderowitz

> Department of Chemistry, Bar Ilan University, Ramat-Gan, 5290002, Israel

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery Moscow, May 2022

Why Pesticides?

7 billion				•7.9 billion in 2022 •••••••7 billion in 2011
Accord	ing to estir	nates co	mpiled by	
the Foo	od and Agr	iculture (Organization	●6 billion in 1999
billion (FAO),	by 2050 we	e will nee	ed to	5 billion in 1987
produc	ce 60% moi	re food to	o feed a	
world	population	of 9.3 bi	llion.	•4 billion in 1975
billion				
billion				•-2 billion in 1928
				1.65 billion in 1900
billion				990 million in 1800 600 million in 1700
4 million in 10.000 BCE	The average growth rate to 1700 was just 0.0	from 10,000 BCE 04%.per year	190 million in the year 0	Mid 14th century: The Black Death pandemi

Based on estimates by the History Database of the Global Environment (HYDE) and the United Nations. On **OurWorldinData.org** you can download the annual data. This is a visualization from **OurWorldinData.org**. Licensed under **CC-BY-SA** by the author Max Roser.

Why Pesticides?

The stall in global progress against undernourishment has been driven by many factors, including economic slowdowns, armed conflicts, humanitarian emergencies, disease outbreaks, pest infestations and adverse consequences of climate change, including drought and extreme weather events.

Figure 1 Global number and percentage of undernourished persons, 2005–2019

Source: Adapted from Food and Agriculture Organization of the United Nations (FAO) and others, The State of Food Security and Nutrition in the World 2020, figure 1. Note: Values for 2019 are projected.

Why Green?

According to estimates compiled by the Food and Agriculture Organization (FAO), by 2050 we will need to produce 60 per cent more food to feed a world population of 9.3 billion. Doing that with a farming-as-usual approach would take too heavy a toll on our natural resources. Thus, we have no choice but to embark on a greener revolution.

- Pesticides may be harmful to human health
- Pesticides may be harmful to the environment
- Pesticides may be harmful to the eco-system

Learning from the Plants

- Plants and pathogens have co-evolved for millions of years
- Plants have developed an arsenal of tools to ward off pathogenic virulence
- Many of these compounds are poly phenolics

Quorum Sensing Machinery

- Bacteria communicate to coordinate virulence via secreted signaling molecules called: "autoinducers"
- Acyl homoserine lactones (AHLs) are the chemical language of gram negative bacteria
- AHLs are synthesized by AHL synthases and are "read" by response regulators
- AHLs ultimately regulate the expression of genes

Pectobacteria

- Gram-negative phytopathogens belonging to the Enterobacteriaceae family
- Cause soft rot in a wide range of food plants as well as ornamental crops

Rank	Bacterial pathogen	Author of bacterial description
1	Pseudomonas syringae pathovars	John Mansfield
2	Ralstonia solanacearum	Stéphane Genin
3	Agrobacterium tumefaciens	Shimpei Magori, Vitaly Citovsky
4	Xanthomonas oryzae pv. oryzae	Malinee Sriariyanum, Pamela Ronald
5	Xanthomonas campestris pathovars	Max Dow
6	Xanthomonas axonopodis pv. manihotis	Valérie Verdier
7	Erwinia amylovora	Steven V. Beer
8	Xylella fastidiosa	Marcos A. Machado
9	Dickeva (dadantii and solani)	lan Toth
10	Pectobacterium carotovorum (and P. atrosepticum)	George Salmond

Symptoms: tissue maceration and decay, foul odor

Quorum Sensing Proteins in Pectobacterium

• QS machinery in *Pectrobacteria* is composed from Expl that synthesize the signaling molecule acyl-homoserine lactone (AHL) from S-adenosyl methionine (SAM) and acylated carrier protein and from ExpR that "reads" it

Joshi et al., ACS Chemical Biology, 2020, 15, 7, 1883–1891, Joshi et al., Scientific Reports, 2016, 6, 38126

ConSurf Analysis of Quorum Sensing Proteins

a AHL synthase

b Response regulator

e An exposed residue according to the neural-network algorithm

b A buried residue according to the neural-network algorithm

f A predicted functional residue (highly conserved and exposed)

s A predicted structural residue (highly conserved and buried)

X Insufficient data; the calculation for this site was performed on <10% of the sequences

Joshi et al., Annual Review of Phytopathology, 2021, 59, 153-190

Structural Analysis of Quorum Sensing Complexes

• Based on the docking of 35 ligands known to affect bacterial QS machinery into 5 relevant crystal structures / homology models

Joshi et al., Annual Review of Phytopathology, 2021, 59, 153-190

Global Pharmacophore Models

In *pectobacteria*, Expl is a more relevant target for QS inhibition

Joshi et al., Annual Review of Phytopathology, 2021, 59, 153-190

Binding of Salicylic Acid to Expl in *Pectobacterium*

- Salicylic acid (SA) is a hormone that mediates systemic acquired resistance in plants
- Can SA interfere with QS by directly binding to Expl?

- SA reduced virulence of the WT construct
- Virulence of a mutant lacking Expl was restored by exogenous AHL and was not abolished by addition of SA
- SA did not affect virulence of a mutant lacking ExpR
- SA operates via Expl

Joshi et al., ACS Chemical Biology, 2020, 15, 7, 1883–1891

Binding of Salicylic Acid to Expl in Pectobacterium

SAM docks to the SAM part of the site

SA docks to the SAM part of the site

Binding of Salicylic Acid to Expl in Pectobacterium

	Protein/Ligand	Glide-XP (Kcal/mol)	ITC (Kcal/mol)
	ExpI-C ₆ HSL	-6.4	-12.48±0.4
	ExpI-SA	-5.3	-4.01±0.16
In Silico Designed	F82A-ExpI-SA	-4.3	-3.5±0.44

Phloretin Interferes with AHL Synthesis

- *Erwinia amylovora* is the cause of fire blight on apple and pear
- The phytoalexin phloretin accumulates in apple leaves in response to *E. amylovora*

Phloretin Interferes with Biofilm Formation

Pun et al., Frontiers in Plant Sciences, 2021, 12, 671807

Phloretin Interferes with AHL Synthesis

Phloretin Interferes with AHL synthesis

Luminescence assay

Ligand	Glide-XP score Expl kcal/mol
OC ₆ HSL	-6.4
SAM	-6.2
Salicylic acid	-5.3
Carvacrol	-6.2
Phloretin	-5.4

Phloretin is a Substrate of the AcrAB/TolC Efflux Pump

Simultaneous application of Phloretin and a inhibitor does wonders!

A Poly-Pharmacological Approach

Expi and AcrAB/TolC-1 are viable targets for virulence control

To date, this procedure has been applied to Expl leading to several compounds with anti-virulence activity

Oomycete

- Fungus-like eukaryotic microorganisms, some of which are severe crop pathogens
- Phytophthora infestans, the agent of potato late blight, was responsible for the Irish potato famine in the 19th century
- *Phytophthora capsici* attacks and rots pepper, cucumber, watermelon and tomato
- Phytophthora ramorum is responsible for sudden oak and larch death diseases in Europe and North America
- *Pythium ultimum* causes damping off and root rot on of vegetables and ornamental plants in nurseries and greenhouses
- *Plasmopora viticola* is the agent of grapevine downy mildew, a disease of high importance for viticulture globally

The Cell Wall of Oomycetes

 The cell wall of oomycetes is primarily composed of Cellulose, β-1,3 and β-1,6 glucans, and small amount of chitin in some species

(Some) Proteins that Participate in Oomycetes Cell-Wall Construction

Pectinesterase

PexRD54-ATG8

1,3-beta-glucanosyltransferase

Modeling Workflow

The Yeast-2 Hybrid System

- Identify linear or cyclic peptide aptamers that inhibit surfaced exposed, vital enzymes involved in oomycete cell-wall formation and cell stability
- Upon binding of the Prey (peptide) to the Bait (target), the two components of the Gal4 transcription factor come together, a reporter gene is activated and an appropriate readout is made possible

The Yeast-2 Hybrid System

How to find the interactor

Challenges in Modeling the Data

- HTS data are
 - Noisy (FP, FN)
 - Imbalanced (More inactives than actives)
 - Represent multiple MOA
- And for peptides
 - Global vs. AA-based descriptors
 - 2D vs. 3D descriptors
 - Sequence dependent descriptors
- And for this dataset
 - Overall small number of peptides
 - Actives and inactives unseperable
 - Sparse coverage of descriptors space
- Which means:
 - Classification (RF)

The Data

Dataset	No. Actives	No. Inactives (1)	No. of Inactives (2)
PiEPIC2B	42	61	61+40+30+12=143
PiAVR3a	40	61	61+42+30+12=145
PvCesA2	30	61	61+42+40+12=155
AtRGL2	12	61	61+42+40+30=173
Total	124	61	

The Data

AtRGL2 Training Sets: VS Completely Inactive

PiEPIC2B Training Sets VS Completely Inactive

VS Inactive and Other Actives

VS Inactive and Other Actives

• 0 • 1

PC2

active

Computational Workflow

Validate on Test Set

Build Model

RF

۰

Report average ± SD for F1-score, precision and recall

Definitions

Precision (PPV): The fraction of relevant instances among the retrieved instances

 $Precision(A) = \frac{Samples \ in \ class \ A \cap Samples \ predicted \ as \ class \ A}{All \ samples \ perdicted \ as \ class \ A} = \frac{TP}{TP + FP}$

 Recall (sensitivity): The fraction of relevant instances that were retrieved

$$Recall(A) = \frac{Samples \ in \ class \ A \cap Samples \ predicted \ as \ class \ A}{All \ samples \ actually \ in \ class \ A} = \frac{TP}{TP + FN}$$

F1-score: Harmonic mean of precision and recall

$$F1 = \left(\frac{Precision * Recall}{Precision + Recall}\right) * 2$$

Computational Workflow

Peptide	Desc1	Desc2		Desc100	active
0	0.44	347		1.12	0
1	0.97	500		4.15	1
2	0.12	783		2.14	1
3	0.36	245		0.89	0
4	0.88	108		3.45	0
5	0.20	790		1.09	1
				_	
	•			+	
Peptide	Desc1	active	Peptide	Desc1	active
1	0.97	1	0	0.44	0
2	0.12	1	3	0.36	0
5	0.20	1	4	0.88	0

Else:

Keep Desc1

Computational Workflow

Overall Results: Set vs. Neg.

Dataset	Data Source	F1-score ± SD	Precision ± SD	Recall ± SD
PiEPIC2B	Original	0.66 ± 0.05	0.67 ± 0.05	0.64 ± 0.06
(42/61)	Original + Synthetic	0.64 ± 0.05	0.65 ± 0.06	0.65 ± 0.06
PiAVR3a	Original	0.64 ± 0.05	0.66 ± 0.06	0.66 ± 0.05
(40/61)	Original + Synthetic	0.63 ± 0.06	0.64 ± 0.06	0.64 ± 0.06
PvCesA2 (30/61)	Original	0.71 ± 0.05	0.72 ± 0.06	0.73 ± 0.05
	Original + Synthetic	0.70 ± 0.06	0.71 ± 0.06	0.70 ± 0.06
AtRGL2 (12/61)	Original	0.82 ± 0.05	0.84 ± 0.07	0.85 ± 0.04
	Original + Synthetic	0.83 ± 0.04	0.84 ± 0.06	0.84 ± 0.06
All (124/61)	Original	0.67 ± 0.04	0.68 ± 0.04	0.70 ± 0.04
	Original + Synthetic	0.67 ± 0.04	0.68 ± 0.04	0.66 ± 0.05

- Reasonably good models
- No large differences between models based on the original data and models based on the original + synthetic data

Overall Results: Set vs. Neg. for Actives

Dataset	Data Source	F1-score ± SD	Precision ± SD	Recall ± SD
PiEPIC2B	Original	$\textbf{0.54} \pm \textbf{0.08}$	$\textbf{0.62}\pm\textbf{0.09}$	$\textbf{0.49}\pm\textbf{0.10}$
(42/61)	Original + Synthetic	$\textbf{0.55}\pm\textbf{0.07}$	$\textbf{0.57}\pm\textbf{0.08}$	$\textbf{0.56} \pm \textbf{0.11}$
PiAVR3a	Original	$\textbf{0.49} \pm \textbf{0.09}$	$\textbf{0.60} \pm \textbf{0.11}$	$\textbf{0.43}\pm\textbf{0.10}$
(40/61)	Original + Synthetic	$\textbf{0.52}\pm\textbf{0.08}$	$\textbf{0.54} \pm \textbf{0.09}$	$\textbf{0.51}\pm\textbf{0.11}$
PvCesA2 (30/61)	Original	$\textbf{0.51} \pm \textbf{0.11}$	$\textbf{0.65} \pm \textbf{0.14}$	$\textbf{0.43}\pm\textbf{0.12}$
	Original + Synthetic	$\textbf{0.55}\pm\textbf{0.09}$	$\textbf{0.55}\pm\textbf{0.10}$	$\textbf{0.58} \pm \textbf{0.13}$
AtRGL2 (12/61)	Original	$\textbf{0.36} \pm \textbf{0.20}$	$\textbf{0.65}\pm\textbf{0.34}$	$\textbf{0.28}\pm\textbf{0.18}$
	Original + Synthetic	$\textbf{0.52}\pm\textbf{0.15}$	$\textbf{0.56} \pm \textbf{0.18}$	$\textbf{0.53}\pm\textbf{0.19}$
All (124/61)	Original	$\textbf{0.80}\pm\textbf{0.03}$	$\textbf{0.73}\pm\textbf{0.02}$	$\textbf{0.88} \pm \textbf{0.05}$
	Original + Synthetic	$\textbf{0.74} \pm \textbf{0.04}$	$\textbf{0.77} \pm \textbf{0.03}$	$\textbf{0.72}\pm\textbf{0.07}$

- F1 increases
- Precision decreases
- Recall increases

Overall Results: Set vs. Neg. for Inactives

Dataset	Data Source	F1-score ± SD	Precision ± SD	Recall ± SD
PiEPIC2B	Original	0.74 ± 0.05	0.70 ± 0.04	0.79 ± 0.09
(42/61)	Original + Synthetic	0.70 ± 0.05	0.70 ± 0.05	0.71 ± 0.09
PiAVR3a	Original	0.74 ± 0.05	0.69 ± 0.04	0.81 ± 0.08
(40/61)	Original + Synthetic	0.70 ± 0.06	0.70 ± 0.05	0.71 ± 0.10
PvCesA2 (30/61)	Original	0.81 ± 0.04	0.76 ± 0.04	0.88 ± 0.07
	Original + Synthetic	0.77 ± 0.06	0.79 ± 0.05	0.76 ± 0.10
AtRGL2 (12/61)	Original	0.92 ± 0.02	0.87 ± 0.03	0.97 ± 0.04
	Original + Synthetic	0.90 ± 0.03	0.90 ± 0.04	0.90 ± 0.06
All (124/61)	Original	0.43 ± 0.07	0.58 ± 0.10	0.35 ± 0.08
	Original + Synthetic	0.52 ± 0.06	0.49 ± 0.05	0.57 ± 0.10

- F1 decreases
- Precision increases
- Recall decreases

AtRGL2 Results: Set vs. Neg.

- Increase in active F1 score
- Large gain in Recall
- Smaller cost in Precision

PiEPIC2B Results: Set vs. Neg.

- Small increase in active F1 score
- Gain in recall is reduced
- Same cost to precision

Summary

- Synthetic data lead to more stable F1-score and precision for actives
- The best improvement in model performance upon adding synthetic data is obtained for active compounds when the datasets are the most biased
- Lack of overall improvement attributable to data inseparability
- Hypothesis: Workflow will work for biased yet separable sets

Acknowledgments

Omer Kaspi

Netaly Khazanov

Lina Iktelat

Shahaf Kozokaro

Paul Clarke

Collaborators

- Iris Yedidia
- Paolo Pesaresi
- Simona Masiero
- Vincent Bulone
- Vaibhav Srivastava

Funding

- EU
- BARD Foundation
- Israel Ministry of Agriculture