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the Food and Agriculture Organization 
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Why Pesticides?

The stall in global progress 
against undernourishment 
has been driven by many 
factors, including economic 
slowdowns, armed 
conflicts, humanitarian 
emergencies, disease 
outbreaks, pest 
infestations and adverse 
consequences of climate 
change, including drought 
and extreme weather 
events.



Why Green?

According to estimates compiled by the Food and Agriculture Organization (FAO), 
by 2050 we will need to produce 60 per cent more food to feed a world population 
of 9.3 billion. Doing that with a farming-as-usual approach would take too heavy a 
toll on our natural resources. Thus, we have no choice but to embark on a greener 
revolution.

• Pesticides may be harmful 
to human health

• Pesticides may be harmful 
to the environment

• Pesticides may be harmful 
to the eco-system



Learning from the Plants

• Plants and pathogens have co-evolved for millions of years

• Plants have developed an arsenal of tools to ward off pathogenic virulence

• Many of these compounds are poly phenolics



Quorum Sensing Machinery
• Bacteria communicate to coordinate virulence via secreted signaling 

molecules called: “autoinducers” 

• Acyl homoserine lactones (AHLs) are the chemical language of gram negative 
bacteria

• AHLs are synthesized by AHL synthases and are “read” by response regulators

• AHLs ultimately regulate the expression of genes
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Pectobacteria

• Gram-negative phytopathogens belonging to the Enterobacteriaceae family

• Cause soft rot in a wide range of food plants as well as ornamental crops

Symptoms: tissue maceration and decay, foul odor
Figure 1. Calla lily tuber (a) uninfected, 

healthy tuber and (b) infected with P. 

carotovorum, causing bacterial soft rot. 

Symptoms of P. carotovorum infection are 

macerated and mushy tissue with garbage like 

odor (Bassoriello 2010).
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Figure 2. Bacterial soft rot of tomato fruit (a) 

and stem rot (b) caused by P. carotovorum. 

Areas infected with P. carotovorum become 

water-soaked and soft, with tissue and lesion 

browning with offensive smell (Howard et al. 

1994).
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Quorum Sensing Proteins in Pectobacterium

Acyl Chain

SAM

Joshi et al., ACS Chemical Biology, 2020, 15, 7, 1883–1891, Joshi et al., Scientific Reports, 2016, 6, 38126

• QS machinery in Pectrobacteria is composed from ExpI that synthesize the 
signaling molecule acyl-homoserine lactone (AHL) from S-adenosyl 
methionine (SAM) and acylated carrier protein and from ExpR that “reads” it

ExpR ExpI



ConSurf Analysis of Quorum Sensing Proteins

Joshi et al., Annual Review of Phytopathology, 2021, 59, 153-190



Structural Analysis of Quorum Sensing Complexes
• Based on the docking of 35 ligands known to affect bacterial QS machinery 

into 5 relevant crystal structures / homology models

Joshi et al., Annual Review of Phytopathology, 2021, 59, 153-190



Global Pharmacophore Models

In pectobacteria, ExpI is a more relevant target for QS inhibition

Joshi et al., Annual Review of Phytopathology, 2021, 59, 153-190



Binding of Salicylic Acid to ExpI in Pectobacterium
• Salicylic acid (SA) is a hormone that mediates 

systemic acquired resistance in plants

• Can SA interfere with QS by directly binding to ExpI?

• SA reduced virulence of the WT 
construct

• Virulence of a mutant lacking ExpI was 
restored by exogenous AHL and was 
not abolished by addition of SA

• SA did not affect virulence of a mutant 
lacking ExpR

• SA operates via ExpI

Joshi et al., ACS Chemical Biology, 2020, 15, 7, 1883–1891



Binding of Salicylic Acid to ExpI in Pectobacterium
C6HSL docks to the Acyl chain part of the siteAcyl Chain

SAM

SAM docks to the SAM part of the site SA docks to the SAM part of the site



Binding of Salicylic Acid to ExpI in Pectobacterium

Protein/Ligand
Glide-XP

(Kcal/mol)

ITC

(Kcal/mol)

ExpI-C6HSL -6.4 -12.48±0.4

ExpI-SA -5.3 -4.01±0.16

F82A-ExpI-SA -4.3 -3.5±0.44In Silico Designed



Phloretin Interferes with AHL Synthesis

Phloretin

• Erwinia amylovora is the cause of fire blight on 
apple and pear

• The phytoalexin phloretin accumulates in apple 
leaves in response to E. amylovora

Phloretin Interferes with Biofilm Formation

Pun et al., Frontiers in Plant Sciences, 2021, 12, 671807



Phloretin Interferes with AHL Synthesis

Phloretin Interferes with AHL synthesis

Luminescence assay

Ligand 
Glide-XP score 
ExpI kcal/mol

OC6HSL -6.4
SAM -6.2
Salicylic acid -5.3
Carvacrol -6.2

Phloretin -5.4



Phloretin is a Substrate of the AcrAB/TolC Efflux Pump 

Simultaneous application of Phloretin and a inhibitor does wonders!



A Poly-Pharmacological Approach

ExpI AcrAB/TolC - 1 AcrAB/TolC - 2

To date, this procedure has been applied to ExpI leading to several 
compounds with anti-virulence activity

Pharmacophore-Based VS
• ZINC (~13.5M) 
• Enamine (~25M)

• MolPort (~8M)

Docking

Analog Search
• ZINC (~13.5M) 
• Enamine (~25M)

• MolPort (~8M)

• Enamine Real Space (~21B) 

Expi and AcrAB/TolC-1 are viable targets for virulence control



Oomycete

• Fungus-like eukaryotic microorganisms, some of 
which are severe crop pathogens

• Phytophthora infestans, the agent of potato late 
blight, was responsible for the Irish potato famine 
in the 19th century

• Phytophthora capsici attacks and rots pepper, 
cucumber, watermelon and tomato

• Phytophthora ramorum is responsible for sudden 
oak and larch death diseases in Europe and North 
America

• Pythium ultimum causes damping off and root rot 
on of vegetables and ornamental plants in 
nurseries and greenhouses

• Plasmopora viticola is the agent of grapevine 
downy mildew, a disease of high importance for 
viticulture globally



The Cell Wall of Oomycetes

• The cell wall of oomycetes is primarily composed of Cellulose, β-1,3 and β-1,6 
glucans, and small amount of chitin in some species

Chitin

Glucan

Cellulose Mannan



(Some) Proteins that Participate in Oomycetes 
Cell-Wall Construction

Pectinesterase PexRD54-ATG8 1,3-beta-glucanosyltransferase



Modeling Workflow



The Yeast-2 Hybrid System

• Identify linear or cyclic peptide aptamers that inhibit surfaced exposed, vital 
enzymes involved in oomycete cell-wall formation and cell stability

• Upon binding of the Prey (peptide) to the Bait (target), the two components 
of the Gal4 transcription factor come together, a reporter gene is activated 
and an appropriate readout is made possible



The Yeast-2 Hybrid System

How to find the interactor



Challenges in Modeling the Data

• HTS data are

• Noisy (FP, FN)

• Imbalanced (More inactives than actives)

• Represent multiple MOA

• And for peptides

• Global vs. AA-based descriptors

• 2D vs. 3D descriptors

• Sequence dependent descriptors

• And for this dataset

• Overall small number of peptides

• Actives and inactives unseperable

• Sparse coverage of descriptors space

• Which means:

• Classification (RF)



The Data

Dataset No. Actives No. Inactives (1) No. of Inactives (2)

PiEPIC2B 42 61 61+40+30+12=143

PiAVR3a 40 61 61+42+30+12=145

PvCesA2 30 61 61+42+40+12=155

AtRGL2 12 61 61+42+40+30=173

Total 124 61



The DataAtRGL2 Training Sets:
VS Completely Inactive VS Inactive and Other Actives

PiEPIC2B Training Sets
VS Completely Inactive VS Inactive and Other Actives



Computational Workflow

Descriptors Calculation
• Canvas

• PADEL

Descriptors Processing
• Remove constant, nearly constant, and correlated descriptors
• Remove sequence independent descriptors (based on scambeled peptides)
• Remove descriptors with similar distributions across actives and inactives

Train/Test random division
• 0.5:0.5 ratio

Augment training set with synthetic data

Build Model
• RF

Validate on Test Set
• Report average ± SD for F1-score, precision and recall

Repeat 500 times



Definitions

• Precision (PPV): The fraction of relevant 
instances among the retrieved instances

• Recall (sensitivity): The fraction of relevant 
instances that were retrieved

• F1-score: Harmonic mean of precision and recall



Computational Workflow



Computational Workflow



Overall Results: Set vs. Neg. 

• Reasonably good models
• No large differences between models based on the original data and 

models based on the original + synthetic data

Dataset Data Source F1-score ± SD Precision ± SD Recall ± SD

PiEPIC2B
(42/61)

Original 0.66 ± 0.05 0.67 ± 0.05 0.64 ± 0.06

Original + Synthetic 0.64 ± 0.05 0.65 ± 0.06 0.65 ± 0.06

PiAVR3a
(40/61)

Original 0.64 ± 0.05 0.66 ± 0.06 0.66 ± 0.05 

Original + Synthetic 0.63 ± 0.06 0.64 ± 0.06 0.64 ± 0.06

PvCesA2
(30/61)

Original 0.71 ± 0.05 0.72 ± 0.06 0.73 ± 0.05

Original + Synthetic 0.70 ± 0.06 0.71 ± 0.06 0.70 ± 0.06

AtRGL2
(12/61)

Original 0.82 ± 0.05 0.84 ± 0.07 0.85 ± 0.04

Original + Synthetic 0.83 ± 0.04 0.84 ± 0.06 0.84 ± 0.06

All
(124/61)

Original 0.67 ± 0.04 0.68 ± 0.04 0.70 ± 0.04

Original + Synthetic 0.67 ± 0.04 0.68 ± 0.04 0.66 ± 0.05 



Overall Results: Set vs. Neg. for Actives

Dataset Data Source F1-score ± SD Precision ± SD Recall ± SD

PiEPIC2B
(42/61)

Original 0.54 ± 0.08 0.62 ± 0.09 0.49 ± 0.10

Original + Synthetic 0.55 ± 0.07 0.57 ± 0.08 0.56 ± 0.11

PiAVR3a
(40/61)

Original 0.49 ± 0.09 0.60 ± 0.11 0.43 ± 0.10

Original + Synthetic 0.52 ± 0.08 0.54 ± 0.09 0.51 ± 0.11

PvCesA2
(30/61)

Original 0.51 ± 0.11 0.65 ± 0.14 0.43 ± 0.12

Original + Synthetic 0.55 ± 0.09 0.55 ± 0.10 0.58 ± 0.13

AtRGL2
(12/61)

Original 0.36 ± 0.20 0.65 ± 0.34 0.28 ± 0.18

Original + Synthetic 0.52 ± 0.15 0.56 ± 0.18 0.53 ± 0.19

All
(124/61)

Original 0.80 ± 0.03 0.73 ± 0.02 0.88 ± 0.05

Original + Synthetic 0.74 ± 0.04 0.77 ± 0.03 0.72 ± 0.07

• F1 increases
• Precision decreases
• Recall increases



Overall Results: Set vs. Neg. for Inactives

Dataset Data Source F1-score ± SD Precision ± SD Recall ± SD

PiEPIC2B
(42/61)

Original 0.74 ± 0.05 0.70 ± 0.04 0.79 ± 0.09

Original + Synthetic 0.70 ± 0.05 0.70 ± 0.05 0.71 ± 0.09

PiAVR3a
(40/61)

Original 0.74 ± 0.05 0.69 ± 0.04 0.81 ± 0.08

Original + Synthetic 0.70 ± 0.06 0.70 ± 0.05 0.71 ± 0.10

PvCesA2
(30/61)

Original 0.81 ± 0.04 0.76 ± 0.04 0.88 ± 0.07

Original + Synthetic 0.77 ± 0.06 0.79 ± 0.05 0.76 ± 0.10

AtRGL2
(12/61)

Original 0.92 ± 0.02 0.87 ± 0.03 0.97 ± 0.04 

Original + Synthetic 0.90 ± 0.03 0.90 ± 0.04 0.90 ± 0.06 

All
(124/61)

Original 0.43 ± 0.07 0.58 ± 0.10 0.35 ± 0.08

Original + Synthetic 0.52 ± 0.06 0.49 ± 0.05 0.57 ± 0.10

• F1 decreases
• Precision increases
• Recall decreases



AtRGL2 Results: Set vs. Neg.

Where                          is small (<<1)

• Increase in active F1 score
• Large gain in Recall
• Smaller cost in Precision

F1 Precision Recall



PiEPIC2B Results: Set vs. Neg.

where                     is close to 1

• Small increase in active F1 score
• Gain in recall is reduced
• Same cost to precision

F1 Precision Recall



Summary

• Synthetic data lead to more stable F1-score and precision for actives
• The best improvement in model performance upon adding synthetic 

data is obtained for active compounds when the datasets are the 
most biased

• Lack of overall improvement attributable to data inseparability
• Hypothesis: Workflow will work for biased yet separable sets  
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