
FSASI "Chumakov FSC R&D IBP RAS" (Institute of Polyomielitis)

Competition and collaboration of *in silico* and *in vitro* screening in the search for new antiviral compounds

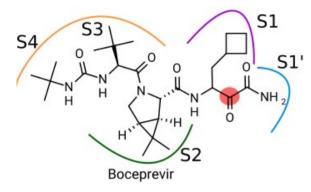
Dmitry Osolodkin

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery Moscow, May 25, 2022

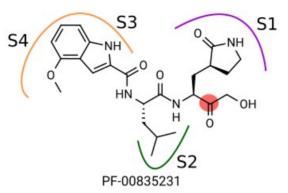
Natural Diversity of Viruses

Viruses are believed to be the most abundant and diverse biological entities on our planet, with an estimated **10**³¹ particles on Earth. The human virome is similarly vast and complex, consisting of approximately **10**¹³ particles per human individual, with great heterogeneity.

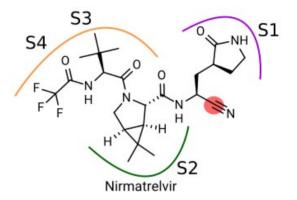
G. Liang & F. D. Bushman, Nat. Rev. Microbiol. (2021) 19, 514-527 doi:10.1038/s41579-021-00536-5


There are an estimated 500,000+ undiscovered animal viruses capable of transmission to people

Diversity of Antiviral Drugs


- ~120 different antiviral drugs (including antibodies, biologicals, combinations, drugs approved at smaller jurisdictions)
- 11 different viruses: HIV, HBV, HCV, HCMV, HSV, VZV, IAV, RSV, HPV, VARV, EBOV, SARS-CoV-2
- Most common classes: nuscleo(s|t)ide analogues, peptidomimetics
- Lots of clinical limitations
- Repurposing options

Vaccination? Nice, **but** cold chain, biologicals only, prophylaxis only, antivaxxers, community immunity, efficiency issues, no guarantee, biosafety — is it easier at all?


Nirmatrelvir: Drug development should start before it is needed (and a textbook example of molecular similarity)

- selective covalent inhibitor of HCV protease
- approved in 2011, withdrawn from the market in 2015
- one of the most common hits in drug repurposing programs against SARS-CoV-2
- $K_i \sim 15 \ \mu M$ (Mpro, FRET)

- selective covalent inhibitor of SARS-CoV(-2) Mpro protease
- intravenous administration of a prodrug •
- developed during the SARS-CoV outbreak (2003-2005), never progressed to clinical studies due to lack of cases
- DOI: 10.1021/acs.jmedchem.0c01063
- DOI: 10.1101/2020.09.12.293498
- $EC_{50} 0.06 \pm 0.03 \ \mu M (SARS-CoV-2, Vero)$
- $K_i 0.27 \pm 0.1 \text{ nM}$ (Mpro, FRET)

- selective covalent inhibitor of SARS-CoV-2 Mpro protease
- oral administration
- first disclosed April 6, 2021
- EUA in **December 2021** (Paxlovid combination with ritonavir)
- DOI: 10.1126/science.abl4784
- EC₅₀ 74.5 nM (SARS-CoV-2, Vero E6)
- *K_i* 3.11 nM (Mpro, FRET)

Complementary Approaches to Antiviral Drug Discovery

Data source curation in GIGO world

- Only 20% of early discovery data are of high confidence
- 0.3 to 1.0 log units errors are not uncommon
- As many variables as possible should be traced
- Mine and resurrect data from the past

Terry Stouch in one of ACS meeting talks

Raw data

Search string issues

"Frederick A. Murphy, Life Member and former President of the International Committee on Taxonomy of Viruses (ICTV), once suggested to me that there are **three things one should not discuss in polite company: religion, politics, and taxonomy**. At first I thought he was joking, but I have come to realize he was not."

> Charles H. Calisher Life Member of ICTV Arch Virol (2016) 161:1419–1422 DOI:10.1007/s00705-016-2779-x

Hepatitis C virus type 2 Hepatitis C virus subtype 4a Hepatitis C virus subtype 2a Hepatitis C virus SA13 Hepatitis C virus isolate HC-J4 Hepatitis C virus genotype 4 Hepatitis C virus genotype 1 Hepatitis C virus (isolate H77) Hepatitis C virus (isolate BK) Hepatitis C virus subtype 6a Hepatitis C virus subtype 3a Hepatitis C virus subtype 1b Hepatitis C virus S52 Hepatitis C virus genotype 6 Hepatitis C virus genotype 3 Hepatitis C virus ED43 Hepatitis C virus (isolate H) Hepatitis C virus Hepatitis C virus subtype 5a Hepatitis C virus subtype 2b Hepatitis C virus subtype 1a Hepatitis C virus JFH-1 Hepatitis C virus genotype 5 Hepatitis C virus genotype 2 Hepatitis C virus (isolate NZL1) Hepatitis C virus (isolate Con1)

Hepatitis C virus Hepacivirus C

Phenotypic screening in silico: ViralChEMBL

 ChEMBL antiviral activity data annotation procedure to ICTV taxonomy

228K

310K

400000

300000

27000

3000

2500

2000

1500

1000

500

100

 Antiviral activity database **Efficiency of guery methods**

38K

400

22K

0

102K

200000

500 600 1000 9000

100000

ViralChembl activities

ViralChembl structures

Human

immunodeficiency

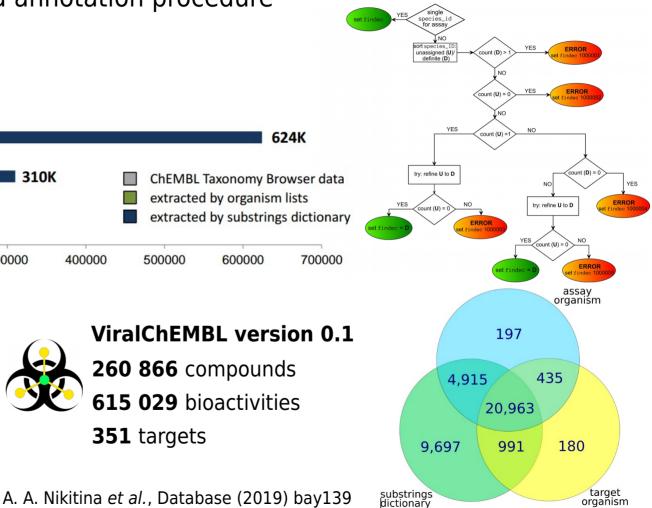
vinis

Vaccinia vin

Influenza A virus Hepatitis C virus

sa mammarenavirus

Marhurg marhurgvirus.


ViralChembl assavs

300

web-activities

web-structures

web-assavs

Phenotypic screening *in silico:* **Chemical space** Generative Topographic Mapping (GTM)

 UMap#1
 UMap#2
 UMap#3
 UMap#4

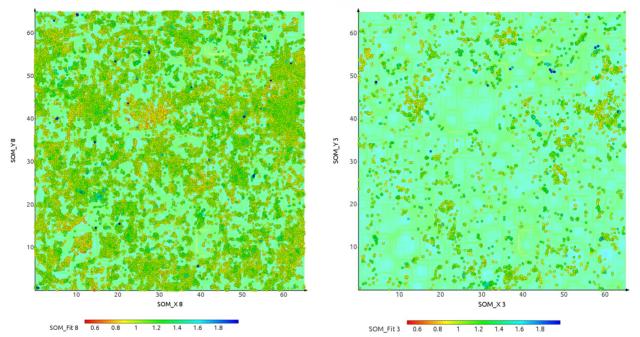
 Image: Imag

GTM: Strasbourg implementation (Prof. A. Varnek et al.)

- ISIDA fragment descriptors
- Universal maps of ChEMBL
- Training set compounds and screening library are projected on them
- Compounds with similar responsibility patterns are selected

Phenotypic screening in vitro: Experimental validation

Generative Topographic Mapping (GTM)

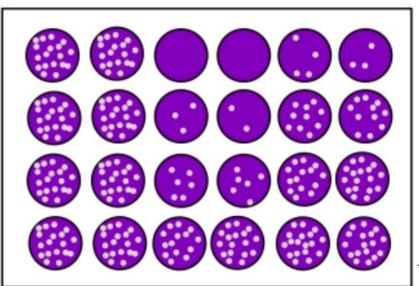

- > 48 compounds purchased
- > 46 tested for anti-TBEV activity
- > 21 inactive
- > 3 inconclusive
- > 22 active (4 of them on 1 uM level of EC_{50})

50% hit rate!!

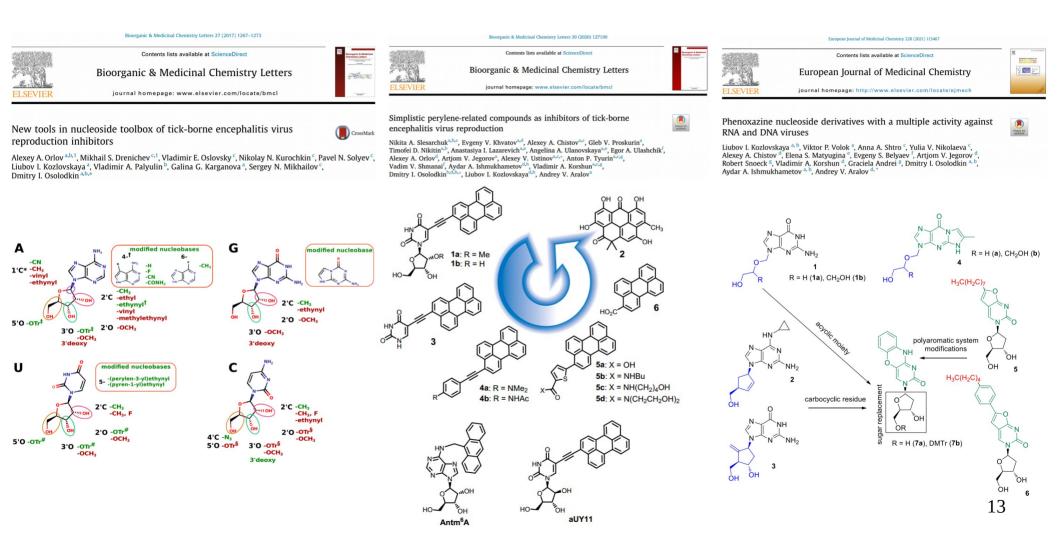
A. A. Orlov et al., Mol. Inf. (2019) 38, 1800166

10

Phenotypic screening *in silico:* Chemical space Self-Organizing Maps (SOM)

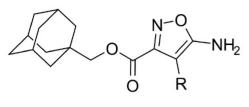

SOM: DataWarrior implementation

- SkelSphere fingerprints
- Target library is mapped
- Training set is projected onto this map
- Neighbourhood shenanigans


Phenotypic screening in vitro: Experimental validation Self-Organizing Maps (SOM)

- > 194 compounds purchased and screened against TBEV anf YFV
- > 55 anti-TBEV compounds
- > 31 anti-YFV compounds
- > 4 selective anti-YFV compounds
- > 13 compounds with $EC_{50} < 5 \text{ uM}$

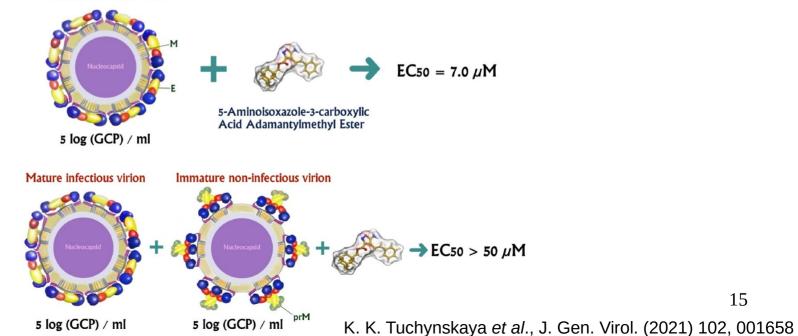
Phenotypic sctreening in vitro: privileged structures


Antiviral activity spectrum

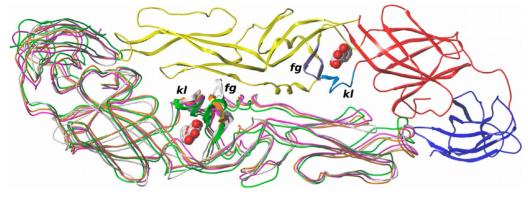
R2				Subtype/Strain/EC ₅₀ (mean \pm SD, μ M)							
				Eu		Sib				FE	
	R1 Coc	le RI	R2	Absettarov	256	Vasilchenko	TV08-T2546	Lesopark I I	EK-328	205KGG	DV 936k
0-	7a	Me	NHBu	31 ± 5	>50	>50	18 ± 4	>50	>50	>50	18 ± 3
	7с	<i>t</i> -Bu	NHCH ₂ Ph	>50	>50	>50	>50	>50	>50	>50	>50
	7o	Me	$NH(2-OH-C_6H_4)$	8 ± 3	21 ± 2	$\textbf{3.4}\pm\textbf{0.2}$	$\textbf{4.0} \pm \textbf{0.4}$	6.5 ± 0.1	12 ± 1	$\textbf{7.0} \pm \textbf{0.2}$	$\textbf{7.4} \pm \textbf{0.3}$
	7t	Et	$NH(CH_2)_2(I-Ad)$	35 ± 2	>50	>50	25 ± 3	>50	>50	>50	>50
	7u	<i>t</i> -Bu	$NH(CH_2)_2(I-Ad)$	6 ± 2	>50	13 ± 2	7 ± 2	6.0 ± 1.5	$\textbf{9.7} \pm \textbf{0.7}$	$\textbf{6.9} \pm \textbf{0.8}$	$\textbf{6.5}\pm\textbf{0.6}$
	7w	<i>t</i> -Bu	$NH(CH_2)_2(2-Ad)$	6 ± 3	>50	16 ± 2	11.4 \pm 0.9	$\textbf{4.4}\pm\textbf{0.2}$	$\textbf{7.5}\pm\textbf{0.6}$	$\textbf{8.3}\pm\textbf{0.4}$	5 ± 2
	7у	Me	NHCH(I-Ad)Ph	8 ± 3	>50	16 ± 2	15 ± 2	23 ± 4	15.0 ± 0.2	10.9 ± 0.5	14.7 ± 0.1
	7z	<i>t</i> -Bu	NHCH(I-Ad)Ph	$4\pm I$	26 ± 2	$\textbf{4.3}\pm\textbf{0.3}$	$\textbf{3.3}\pm\textbf{0.4}$	$9\pm I$	10.1 ± 0.9	4.1 ± 0.3	4.3 ± 0.1
	7ab	<i>t</i> -Bu	N (2-Ad)	23 ± 6	>50	>50	$29\pm I$	35 ± 5	39 ± 2	$37\pm I$	12 ± 2
8.10 7.10 6.10 5.10 4.10 3.10		• TBEV Strain 256: identical to Absettarov by E protein sequence, but all compounds are much less active									
2.10 - 1.10 -				Contains much more decoy particles: non- infectious, immature, destroyed							
-0.90	ildrenko nuositzako	arkin	Et.328 DU9364					,			14
Abset	sidento NOS-1246	esope	6 04	E V		otal Antiv	vir Cham Ch	omother (?	00001 28 °	20402066	20013162

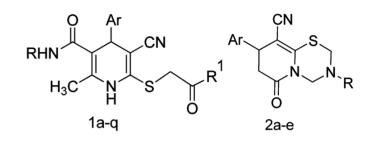
log₁₀ (E concentration [ng/L])

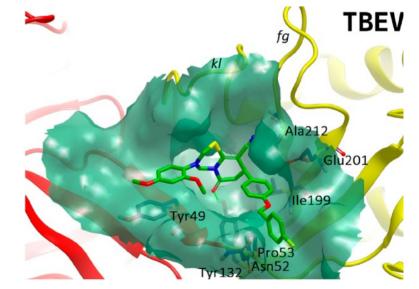
E. V. Dueva et al., Antivir. Chem. Chemother. (2020) 28, 2040206620943462


Influence of immature virions

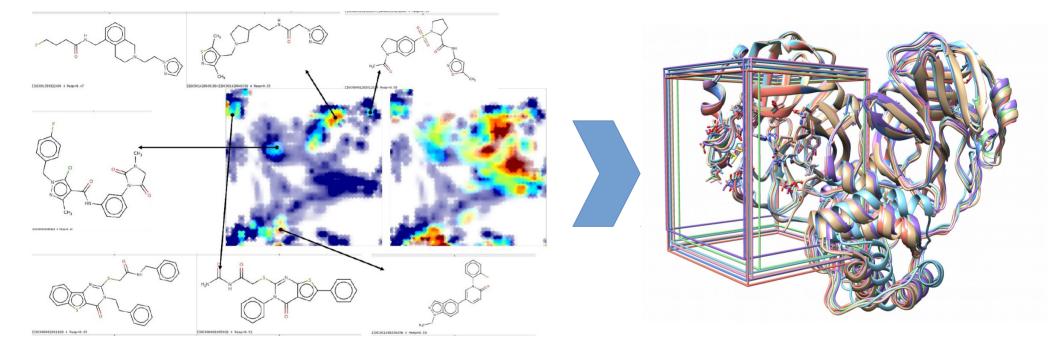
 $R = H (4j), CH_2CH_2Ph (4o)$


Virus sample (strain, maturity, dose)	4j EC ₅₀ , μΜ	40 EC ₅₀ , μΜ
EK-328, immature, 6 log(GCP) ml ⁻¹	>50	>50
EK-328, immature, 6,7 log(GCP) ml ⁻¹	>50	>50
EK-328, mature, 5 log(GCP) ml ⁻¹	39.56±0.4	7.00±1.4
Absettarov, mature, 3 log(GCP) ml ⁻¹	1.7±0.1*	3.7±0.2*a


Mature infectious virion

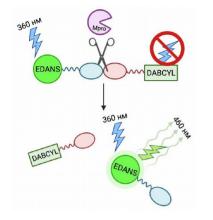

15

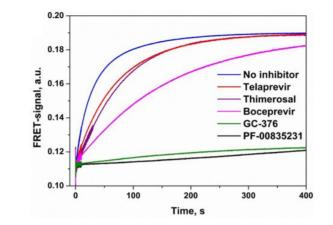
Target-based screening in silico: TBEV E protein molecular docking

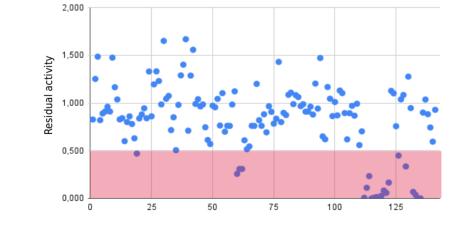

							IC ₅₀ , μM	
compd	Ar	R	\mathbb{R}^1	CC ₅₀ , μM (acute)	CC ₅₀ , µM (chronic)	TBEV	POWV	OHFV
1a	2-furyl	4-EtOC ₆ H ₄	4-nBuC ₆ H ₄ NH	64	14	2.5 ± 0.5	>10	>10
1b	2-furyl	4-H2NSO2C6H4	4-EtC ₆ H ₄ NH	>250"	153	>10	>10	10 ± 7.8
1c	2-furyl	4-ClC ₆ H ₄	4-EtC ₆ H ₄ NH	26	27	>10	>10	>10
1d	2-furyl	4-EtC ₆ H ₄	4-EtC ₆ H ₄ NH	57	33	>10	>10	>10
1e	2-furyl	2-MeC ₆ H ₄	2-naphthyl-NH	>250	>250	>10	>10	5.3 ± 0.1
1f	2-furyl	Ph	3,4-Me2C6H3	>250	19	>10	>10	3.2 ± 0.8
1g	2-furyl	2,6-Me ₂ C ₆ H ₃	2-benzothiazolyl- NH	>250	7	>10	>10	7.1 ± 0.1
1h	2-furyl	2-benzothiazolyl	2-benzothiazolyl- NH	>250	52	>10	>10	2.5 ± 0.9
1i	2-furyl	2-benzothiazolyl	4-iPrC ₆ H ₄ NH	>250	29	>10	>10	2.5 ± 0.1
1j	5-Me-2-furyl	2-MeOC ₆ H ₄	4-BrC ₆ H ₄ NH	248	34	>10	>10	3.7 ± 0.4
1k	2-thienyl	Ph	Ph	>250	17	>10	>10	>10
11	2-thienyl	2-MeOC ₆ H ₄	4-MeC ₆ H ₄ NH	>250	97	>10	>10	5.5 ± 0.9
1m	Ph	4-ClC ₆ H ₄	3-MeC ₆ H ₄ NH	>250	41	2.0 ± 0.4	>10	>10
1n	Ph	4-ClC ₆ H ₄	4-PhOC ₆ H ₄ NH	>250	38	2.8 ± 0.6	>10	>10
10	Ph	4-ClC ₆ H ₄	2-naphthyl-NH	111	20	>10	>10	>10
1p	$2-FC_6H_4$	2-MeC ₆ H ₄	4-MeOC ₆ H ₄ NH	>250	89	>10	>10	7.2 ± 0.5
1q	4-HO-3-MeOC ₆ H ₃	Ph	4-EtC ₆ H ₄ NH	114	31	>10	>10	1.8 ± 0.4
2a	4-(4-ClC ₆ H ₄ CH ₂ O)C ₆ H ₄	2,4-(MeO)2C6H3		109	39	0.07 ± 0.02	1.3 ± 0.1	>10
2b	3-BnOC ₆ H ₄	2-EtOC ₆ H ₄		>250	116	2.6 ± 0.4	2.2 ± 0.3	>10
2c	3-BnOC ₆ H ₄	4-EtC ₆ H ₄		>250	236	>10	>10	>11.9
2d	4-BnOC ₆ H ₄	4-nBuC ₆ H ₄		>250	35	1.9 ± 0.4	>10	>10
2e	4-BnO-3-MeOC ₆ H ₃	4-MeOC ₆ H ₄		>250	53	0.09 ± 0.01	>10	>10

16

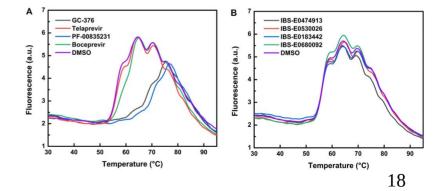
D. I. Osolodkin et al., ACS Med. Chem. Lett. (2013) 4, 869-874


Virtual screening of SARS-CoV-2 main protease inhibitors




D. Horvath *et al.*, Mol. Inf. (2020) 39, 2000080 ¹⁷ M. Y. Zakharova *et al.*, Front. Pharmacol. (2021) 12, 773198

In vitro screening of Mpro inhibitors



Activity distribution for assessed compounds

Inhibitor	K _i exp., uM	K _i lit., uM		
PF-00835231	0.0057	0.00027		
GC-376	0.066	0.06		
Boceprevir	1.2	1.18		
Telaprevir	8.9	18 (IC ₅₀)		
Disulfiram	0.1	0.3		
Thiomersal	0.6	0.6		
IBS-E0680092	20.7			
IBS-E0183442	26.3			

M. Y. Zakharova *et al.,* Front. Pharmacol. (2021) 12, 773198

Inactives (125)

Actives (21)

Outlook

- We have developed *in vitro* and *in silico* screening approaches with a specific attention to discovery of antivirals;
- Applicability of the approaches to the practically relevant problems is demonstrated;
- New antiviral chemotypes discovered;
- Mechanism of action studies for new antivirals are underway, including the structural virology studies.

- Chumakov FSC R&D IBP RAS: A. A. Ishmukhametov, A. M. Egorov, L. I. Kozlovskaya, G. G. Karganova, V. I. Uvarova, A. A. Orlov, A. A. Nikitina, E. V. Dueva, K. K. Tuchynskaya, M. F. Vorovich, A. Zolotareva, A. A. Eletskaya, A. Rogova, E. V. Khvatov, A. D. Fomina, V. S. Frolenko
- Lomonosov MSU: N. S. Zefirov, V. A. Palyulin, E. B. Averina, K. N. Sedenkova, D. A. Vasilenko, I. V. Perminova, A. V. Kurkin, M. Sukhorukov, E. V. Radchenko
- Shemyakin-Ovchinnikov IBC RAS: A. G. Gabibov, E. N. Kaliberda, M. Y. Zakharova, V. A. Korshun, A. A. Chistov, A. Aralov, G. Proskurin
- Postovsky IOS Ural Branch RAS: V. N. Charusnin, G. L. Rusinov, V. L. Rusinov, V. P. Krasnov, S. K. Kotovskaya
- ICBFM SB RAS: N. A. Kuznetsov, A. A. Kuznetsova
- University of Strasbourg: A. Varnek, D. Horvath, G. Marcou, F. Bonachera
- Orekhovich IBMC RAS: V. V. Poroikov, D. S. Druzhilovsky
- SkolTech: E. Sosnina, S. Sosnin, M. Fedorov, A. Zherebker, E. Nikolaev
- Engelhardt IMB RAS: S. N. Kochetkov, S. N. Mikhailov, V. E. Oslovsky, M. Drenichev, L. A. Alexandrova, E. Matyugina, A. Khandazninskaya
- Zelinsky IOC RAS: N. E. Nifantyev, A. O. Terentyev, I. Yaremenko, V. Vil, S. Z. Vatsadze
- Kuban State University: V. V. Dotsenko, S. Krivokolysko, K. Frolov
- NIOCh SB RAS: O. I. Yarovaya, A. S. Sokolova
- European XFEL GmbH: S. Molodtsov, M. Rychev, E. Round, A. Mancuso & SPB/SFX team, J. Bielecki, R. Bean