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Frontiers in Structure Based Drug Discovery
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CADD From Basic Science to Commercial Design Packages

▪ Stable Structure

▪ System Simulation

▪ Docking Simulation

▪ Free Energy Perturbation

▪ ADMET Prediction

▪ ……….

▪ Thermodynamics

▪ Statistical Mechanics

▪ Empirical Force Fields

▪ Quantum Mechanics

▪ Dynamic Simulations

▪ Solvation Free Energy

▪ Information Science

▪ Artificial Intelligence

Physics, Phys. Chem.,
Chemistry, Biology,
Computer Science, ..

Drug Design with 

packaged S/W

Commercial/  
inhouse S/W, DB, 

…
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Empirical Potential Energy Function (Force Fields)

5

Energy – Mechanics Based Design

Harold Scheraga

ECEPP/2,3

FF for Protein in 

Torsion space

Martin Karplus

CHARMMnn

All intra degree 

of freedom

Noble Prize 2013

Peter Kollman

AMBER

Most widely used 

→ open source

Norman Allinger

MM/2&3

Intramolecular FF

For smaller 

molecular structure

BMDRC 

PMFF
Since 1987~2020

Physics based FF 

parameters 

determination

First in ASIA

SB Hwang, et al.,  J. Phys. Chem. B (2020)

William Jorgensen

OPLS,..., OPLS3e..

Good for liquid Sim.

Fit to Free Energy 

Perturbation
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Limitation of Empirical FF in Accuracy of Energy Calculation
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Where it Comes?

Empirical Force Fields
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ℎ2
𝐸 − 𝑉 Ψ = 0 Generate Big Data (PESs)

Neural Network 

Potential (NNP)
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Adrian E. Roitberg

Deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn 

an accurate and transferable potential for organic molecules.

ANAKIN-ME: Accurate NeurAl networK engINe for Molecular Energies

Neural Potential vs. QM-DFT Calculation 
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Training of ANI-n Neural Network Potential

▪ ANI-1: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

▪ ANI-1x: Less is more: Sampling chemical space with active learning

▪ ANI-1ccx: Approaching coupled cluster accuracy with a general-purpose NNP through transfer learning

▪ ANI-2x: Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens
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Behler and Parrinello's HDNN or HD-atomic NNP model. 

Atomic NNP model & It’s Application to Molecule (H2O)
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Top ranking of docking poses in 10 X-ray crystal structures

PDB ID
Generated 

Poses

Calc. 

Time (s)

Total 

Atoms

RMSD (Å) of 

ANI-2x Top 1

RMSD (Å) of 

Emodel Top 1

1E66 44 10.23 8247 0.3538 0.3538

2FSZ 512 66.27 3900 0.5232 0.9998

2OF2 133 18.41 4407 0.5995 0.5995

2P2I 333 51.52 4867 0.3923 0.7912

2RGP 955 155.66 5141 0.616 1.4343

3C4F 88 13.35 4871 0.2916 0.2916

3EL8 126 19.25 4462 0.8123 0.8679

3KL6 410 53.65 3688 0.5011 1.2538

3LAN 53 12.74 9120 0.4643 0.4643

3NY8 101 20.68 7180 0.7157 2.511

Protein-Ligand Docking Study with ANI-2x

Neural network potentials have provided accurate results for intra- and

intermolecular interactions in protein-ligand complexes. Although ANI-

2x was not trained for protein structures and ionic molecules, scoring

the docking poses with ANI-2x was reasonable and we showed that

ANI-2x can be applied to molecular docking simulations. These

methods can be incorporated directly into existing docking scoring

methods to select the most favorable binding pose of a ligand. These

few applications of NNP would be the start point of how machine

learning will create new trends in biosciences.
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Fragment Molecular Orbital (FMO) for Protein Energy Calculation

Prof. Taikyue REE Prof. Kenichi FUKUI Prof. Keiji MOROKUMA Prof. Kazuo KITAURA

Institute of Molecular Science, Okazaki

分子科學硏究所, 岡崎
How to calculate the Energy (Electron 

density) of Proteins with Quantum 

Chemical Calculation

Fragment Molecular Orbital (FMO)
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For FMO → Energy Decomposition & Structure Fragmentation

𝐸 =

𝐴

𝐸 𝐴 + 

𝐴>𝐵

𝐸 𝐴𝐵 =

𝐴

𝐸 𝐴 +
1

2


𝐴≠𝐵

𝐸 𝐴𝐵

Kitaura–Morokuma or Ziegler–Rauk schemes

Energy Decomposition (Partitioning): the total dissociation energy De is decomposed into a 

number of physically meaningful components by dividing the interaction process between two or 

more fragments A and B.

−𝐷𝑒 = ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐸𝑒𝑥 + ∆𝐸𝑝𝑜𝑙 + ∆𝐸𝐶𝑇 + ∆𝐸𝑚𝑖𝑥

Structure Fragmentation: The bond energetics within a molecule is to decompose the total 

energy of the molecule within a given quantum-chemical method into a sum of monoatomic and 

diatomic contributions (fragments) as follows, 

Fragment MO (FMO)

A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation, Kazuo Kitaura & Keiji Morokuma, Int. J. Quantum Chem., 1976, 10, 325~340

On the calculation of bonding energies by the Hartree Fock Slater method, Tom Ziegler & Arvi Rauk, Theoretica Chimica Acta, 1977, 46, 1–10
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Initial electron

density

Electrostatic 

potential

New electron 

density

𝜓0 𝐻0 +△ 𝐻 𝜓1

𝜓𝑓

Pair Interaction E

Energy decomposition

Define binding pocket

ligand

Fragmentation

Structure Fragmentation of Protein
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I Binding Pocket Analysis

▪ Pocket analysis

▪ FMO Calculation

▪ Selection of “Hot Spots”

II Customized Library

▪ NP3000, Natural Compd. Lib.

▪ 107 Synth. Compd. Virtual Lib

▪ Selection of “Hot Spots”

▪ Protein-protein complex str.

▪ Inhibitor complex

III Virtual Screening

IV Hit Compounds

Screening with in 

silico Toxicity, PK 

& physical 

property (QSARs)

VI Hit to Lead Optimization

Ligand-based 
Screening

Structure based 
Screening

3D-SPIEs for PPI complexes Inhibitor complexes

V
Hit Compounds 

Validation

Feature-specific filtering
▪ Pharmacophore-based screening
▪ Shape-based ligand clustering

A

Initial binding pose generation
• ANI-1-based conformational search (NNPot)
• Docking-based binding pose generation

Initial binding pose filtering
• MM-based pose ranking
• FMO-DFTB3-based pose ranking

Semi-empirical-based pose optimization
• FMO-DFTB3-based pose optimization

Receptor-specific scoring function
• FMO-PIEDA based enthalpy term
• PCM (MM/GBSA) based solvation term
• Non-polar-SA (Nrot) based entropy term

Hit-based scoring function optimization
• Classification models (e. g., fluorescence assays)
• Regression models (e. g., binding affinity)

B

C

D

E

F

Target Protein Structure Analysis

In vitro, in vivo

In vitro study – Efficacy
• Luciferase activity

In vitro study - Binding
• Cryo-EM

• SPR assay

• Thermal shift assay

• FRET assay

FMO based Drug Design Platform, AVENGERS
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FMO for Protein-Ligand Binding Energy Calculation

X-linked inhibitor of apoptosis protein (XIAP), inhibits caspases through its (BIR) domains.

1 2 3

4 5 6

7 8

Ligand IC50 (mM) PDB (resol/A) PIEs

AVPI 0.32 1G73   (2.00) -246.078

1 >5,000 5C3H  (2.65) -204.792

2 >495 5C7A  (2.36) -217.849

3 5.5 5C7C (2.32) -220.880

4 0.64 5C84   (2.36) -257.064

5 0.22 5M6F  (2.39) -241.754

6 0.16 5C83   (2.33) -247.424

7 0.15 5M6H (2.50) -246.405

8 0.044 5M6M (2.37) -246.913

Figure 1. Correlation plot between the experimentally measured binding affinity pIC50 an

d the total PIEs as calculated by the FMO method. 

Computational and Structural Biotechnology Journal 17 (2019) 1217–1225
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Scientific Reports | (2019) 9:16727 | https://doi.org/10.1038/s41598-019-53216-z

Analysis of PD1-PDL1 Interaction
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Jan. 6, 2020

In Jan, 2020

Feb.15, 2020

Feb. 19, 2020

Feb. 21, 2020

Feb. 26, 2020

Confirm Coronavirus pathogens with TEM

How the virus is transmitted is key to prevent & controlling it

SAR-CoV2 gene sequence & purified the spike protein

Structure: SARS-CoV2 spike protein bound to h-ACE2: Cryo-EM

Structure, Function, & Antigenicity of the Spike Glycoprotein: Cryo-EM

spike protein structure from SARS-CoV-2 on PDB

In Mar., 2020 QM calculation on Spike protein-hACE2 with the structure from PDB

Apr.20 , 2020 Submit information on the import interaction points between Spike protein 
and h-ACE2    (bioRxiv: April  27): FMO (QM)

In Apr. , 2020 Virtual Screening for drug repositioning with hot spots: AVENGERS

In two

months

Analysis of SARS-CoV-2 Spike Protein & h-ACEII Interaction
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Scientific Reports | (2020) 10:16862 | https://doi.org/10.1038/s41598-020-73820-8

Analysis of SARS-CoV-2 Spike Protein & h-ACEII Interaction
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Hippo Pathway On Hippo Pathway Off

“Loss of Hippo signaling and YAP overactivation 

are observed in many cancer patient”

Growth control pathway 
• Organ growth control, stem cell function, regeneration, and 

tumor suppression

• 2. Deregulated  in many cancers  → cancer initiation and 

progression

YAP-TEAD PPI Inhibitors Discovery, in Hippo Pathway
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YAP-TEAD PPI Inhibitor Discovery (TEAD Targeting)

Central Pocket

▪ Features of pharmacophore 

were generated from hot spot 

information obtained with 

FMO calculations

▪ Features are selected within 

the surface range that small 

molecules can cover.

▪ Then Virtual Screening

A

B

C

D

E

Lead 

7.0 M Compound DB

FMO-based VS

Drug-like filter

Molecular docking

Clustering & 

Visual inspections

Cancers 2021, 13, 4246
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Omega-loop

Alpha-helix domain

Central pocket

Interface2

Interface3

Inventiva

Vivace

Flufenamic acid

DNA binding site

BY03

BY02

Inventiva

Baobab

Is Drug 
Target?

YAP-TEAD PPI Inhibitor Discovery (TEAD Pharmacophores)
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Measure Activity of BY02, BY03 by Luciferase Report Assay
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Binding Energy Analysis of BY-02 with FMO PIE

SER313

TYR346

ASN369

VAL366

LEU357
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• TEAD’s binding amino acids are represented within 3Å from 
BY02 docking pose.

• BY02 was performed at FMO-DFTB3/D/PCM level with the 
third order corrected density functional tight-binding (DFTB3) 
method with 3OB parameter set, UFF-type dispersion 
correction (D), and polarizable continuum model (PCM).

• In energy minimization, the residues within 10.4 Å from 
ligand were included and fixed, while only the ligand was 
fully flexible.Cancers 2021, 13, 4246



FMO based Protein Engineering Platform, CARPET

Cryo-EM generate scattering image of 

target protein complexes.   The image is 

converted to the electron density of the 

target.  Then the electron density is 

converted to protein structure. 

Cryo EM Structure

Protein sequence data are used for 

generating phylogenetic tree and 

protein mutation pool for binding 

affinity, thermal stability, and so on.

Phylogenetic tree

Neural Network Potential Guided 

Statistical Mechanical methods are 

used in performing computational 

mutagenesis and confirming the 

specific properties. 

Computational Mutagenesis

QM methods are used for  analyzing 

the crucial interactions in target 

protein with Cryo-EM structures and 

construct the hot spot map on the 

target protein-protein interface.

Protein Binding Analysis-QM

⚫ CryoSPARC: Images to electron density

⚫ NNP/QM/MM : with electron density to 

high resolution structures

⚫ NCBI Sequence & Meta data (pH & T)

⚫ Phylogenetic tree with multiple 

sequence analysis

⚫ 3D-SPIEs with QM Fragment 

Molecular Orbitals (FMO)

⚫ Free Energy Perturbation (FEP)

⚫ Thermodynamic Integration (TI)

⚫ Neural Network Potentials (NNP)ROSETTA
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Protein Engineering with CARPET – Superoxide Dismutase

▪ Propose 12 Variants from 50% Thermophiles

▪ 12 heat-resistant SOD candidates were cloned

▪ Purified variants were characterized for:

✓ Activity, protein quantification, heat resistance

Specific
Activity (U/mg)

Residual 
activity (%)

BCM_Tm1 
(°C)

Tagg 266 
(°C)

wild type 2200 47.5 55 64

1 1708 75 65 38

2 2161 92 66 37

3 1381 86.5 67 57

4 868 89.1 51 39

5 2618 80.8 64 51

6 650 55.5 66 36

7 1641 82.7 44 50

8 1934 50.7 NaN 38

9 1857 56 NaN 56

10 1747 104.2 61 52

11 2124 24.1 63 54

12 1503 45.1 46 56

Conserved Domain
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Quantum Computing
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▪ Quantum computing’s ability to simulate larger, more complex molecules could be 
game changing. Pharmaceutical companies should reflect on their strategic stance 
to this promising new technology now.

▪ Pharma & chemical industry will be one of the first industries to benefit by the 
impact of Quantum Computing (QC).

▪ Given its focus on molecular formations, pharma as an industry is a natural 
candidate for QC. 

▪ Since molecules are actually quantum systems, systems that are based on 
quantum physics, QC is expected to be able to predict and simulate the structure, 
properties, and behavior of these molecules more effectively than conventional 
computing can. 

June 2021, McKinsey & Company

Impact of Quantum Computing on Pharma (McKinsey report)

Pharma & Chemical Industry-Quantum Computing
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July, 2021

~38 Startups

~9 H/W providers

3 Consortia

Pharmacos: For Drug Discovery & Development            Startups: Provide Quantum Algorithm for Drug Design

Hardware providers: Quantum Computer & Languages

Quantum Computing Ecosystem in Drug Discovery 
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Maturity Evolution of QC
~40 years

WINDOW OF OPPORTUNITY FOR PHARMA

Not fully error-corrected QC
(2020–30) 

Fully error-corrected QC
(2020–30) 

Key 
Activity

Funding
Source 

Fundamental R&D
▪ Academic and 1st 

commercial R&D activities
▪ Disruptive changes
▪ Emergence of quantum

-inspired algorithms 

Only governments or 
pioneers invest

Commercialization wherever
QC can bring early value
▪ Commercial R&D and 

business development
▪ Disruptive and 

incremental changes

Corporate R&D budgets, VC, & 
governments

Full value creation & 
commercial-ization of QC 
▪ Upscale and rollout to serve late 

adopters
▪ Dominance of incremental 

changes

Value-based pricing 
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QM based MD (Drug Design)

Value Creation through QC in the Pharmaceutical Industry



Physical Qubit Roadmap in Quantum Computer
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Industries

Chemical & Petroleum

Distribution & Logistics

Financial service

Health Care & Life Science

Manufacturing

Algorithm families

⚫ Chemical Simulation

▪ Scenario Simulation

▲ Optimization

◆ AL/ML

2019 IBM Corporation

◆ Seismic Imaging

▲ Oil Shipping/ Trucking

▲ Refining process

▲ Feedstock to Product

◆ Drilling Locations

⚫ Surfactant, Catalysts

⚫ Chemical production design

▲ Vehicle Routing

▲ Network Optimization

▲ Transaction Settlement

▲ Portfolio Management

◆ Credit/Assert Scoring

⚫ Drug Discovery/ In licensing

⚫ Protein Structure Predicton

⚫ Quantum Chemistry

⚫ Material Discovery

▪ Disruption Management

▲ Distribution supply chain

◆ Flight Forecasting

◆ Irregular Behaviors(Ops)

▪ Derivatives Pricing

▪ Investment Risk Analysis

◆ Irregular Behaviors (Fraud)

▲ Medical/Drug Supply Chain

◆ Accelerated Diagnosis

◆ Clinical Trial Enhancement

◆ Genomic Analysis

▲ Process Planning

▲ Manufacturing Supply Chain

▲ Fabrication Optimization

◆ Quality Control

HORIZON 1 HORIZON 2 HORIZON 3

◆ Construct Offer

Recommender

◆ Finance Offer

Recommender

◆ Structure Design

& Fluid Dynamics

▪ Disease Risk 

Prediction

Quantum Volume and Industrial Application Potential
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Quantum Error: High Probability of Hardware Error in Quantum Computer 

→ Need Error Correction  → Stabilizer

Quantum volume: a metric that measures the capabilities and error rates 

of a quantum computer. It expresses the maximum size of square 

quantum circuits that can be implemented successfully by the computer.

Transistor in a 

Classical Computer

𝑝~10−27

Qubit in a 

Quantum Computer

𝑝~10−3
VS

~24 orders of magnitude difference
IBM Quantum / © 2021 IBM Corporation

Quantum Volume & Quantum Error (Noise) Correction in QC
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Quantum computational study of chloride ion attack on chloromethane for chemical accuracy and 

quantum noise effects with UCCSD and k-UpCCGSD ansatzes

▪ 현재의 Quantum Volume(QV)과 Quantum Error 

Correction(QEC) 환경에서 가능한 화학 시스템 계산

▪ QV와 QEC의 개선 후 분자설계 가능성 확인 및 준비

▪ FMO를 위한 알고리즘의 협력 개발 및 IP 공유

▪ QC를 사용한 구조기반 모델링 공동 개발 계약

▪ 국내 최초로 QC를 TS 계산에 적용
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▪ FMO is a very useful tool for calculating the electron density and energy of proteins.

▪ Using FMO, it is possible to calculate the interaction energy between a protein and a 

ligand, and furthermore, the interaction type can be analyzed with the energy-

decomposition tool (PIE).

▪ Compared to QM calculation, NNP has a very short calculation time, but the energy 

can be obtained even at the CCSD MO level depending on the training data set.

▪ We developed AVENGERS for small molecular drug design and CARPET for protein 

design based on the FMO method. Also, the usefulness of these two platforms was 

verified through various experiments.

▪ The introduction of quantum computing in Computer-Aided Drug Discovery will allow 

CADD to lead the entire process of drug discovery within 10 years.

SUMMARY
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http://www.bmdrc.org


