

Cheminformatics in drug discovery and public health Progress and challenges ahead

José L Medina-Franco

DIFACQUIM research group

Department of Pharmacy School of Chemistry, UNAM, Mexico

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery May 26th, 2022

Outline

- Introduction
 - UNAM & research group
 - Chemoinformatics
- Progress in drug discovery and public health
 - Case study: Epigenetic drug discovery; inhibitors of DNA methyltransferases
- Cheminformatics: Challenges ahead
- Summary

National Autonomous University of Mexico UNAM

- 350,000 students
 - -6,836 students: School of Chemistry
- 12,400 full-time professors
- 2,200 buildings in Mexico and abroad

School of Medicine

Main Library

Concert Hall

Soccer Stadium

Extension schools abroad

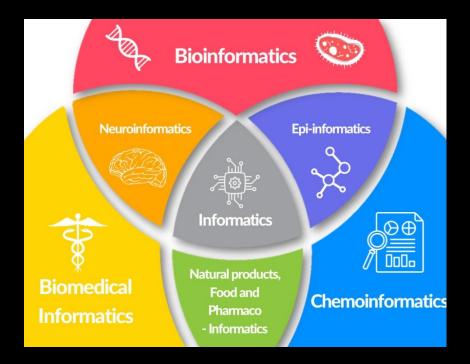
UNAM - Tucson Centro de Estudios Mexicanos

Universidad Nacional Autónoma de México

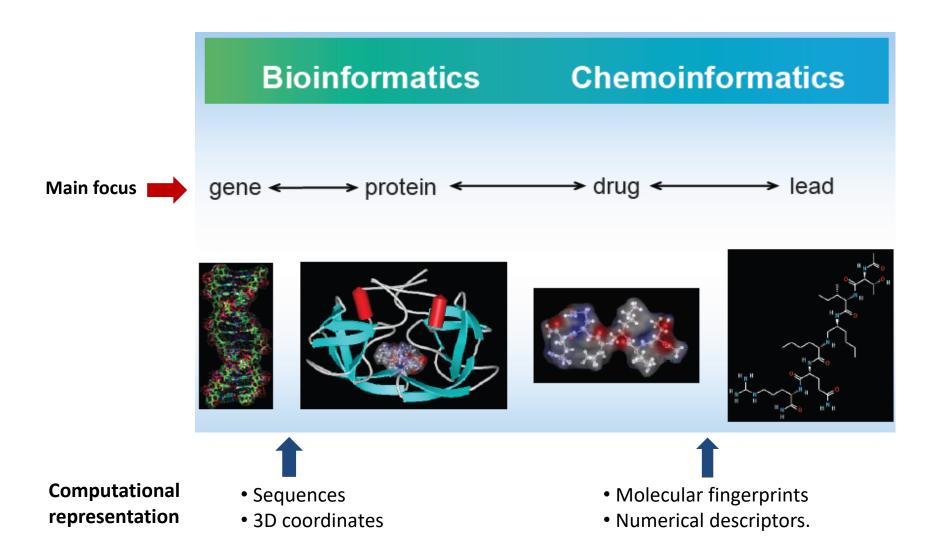
Chicago, Illinois

Main campus in Mexico City

Research group DIFACQUIM Computer-Aided Drug Design at School of Chemistry

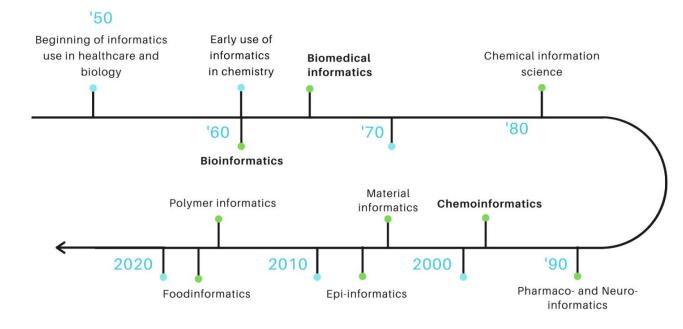

Bachelors Jocelyn Salazar Alexis Flores Claudia D. López Alejandro Ochoa Hassan Villegas MSc Liliam Martínez (UNAM) Camila Garibay (UMSNH) Alberto Zavala (UMSNH) Eva Palma (UMSNH) Co-tutor: Dr. Víctor M. Baizabal Ph.D. Fernanda Saldivar Diana Prado Bárbara Díaz **Ana Chávez** Emma Andrade Alejandro Gonzalez **Edgar López** (CINVESTAV) Co-tutor: Dr. Carlos C. Rojas

www.difacquim.com

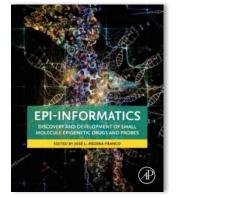

Chemoinformatics

"All concepts and methods that are designed to interface theoretical and experimental efforts involving small molecules"

Drug Discovery Today 2004 9:13–14



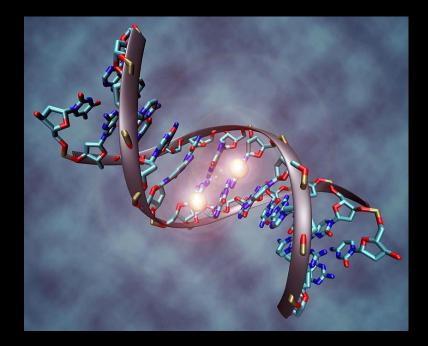
Chemoinformatics and bioinformatics



Timeline and impact of chemoinformatics

informatics

Today


Epigenetic drug discovery

Applications in different areas Itematics Toxicity Natural products informatics Biomedical Output

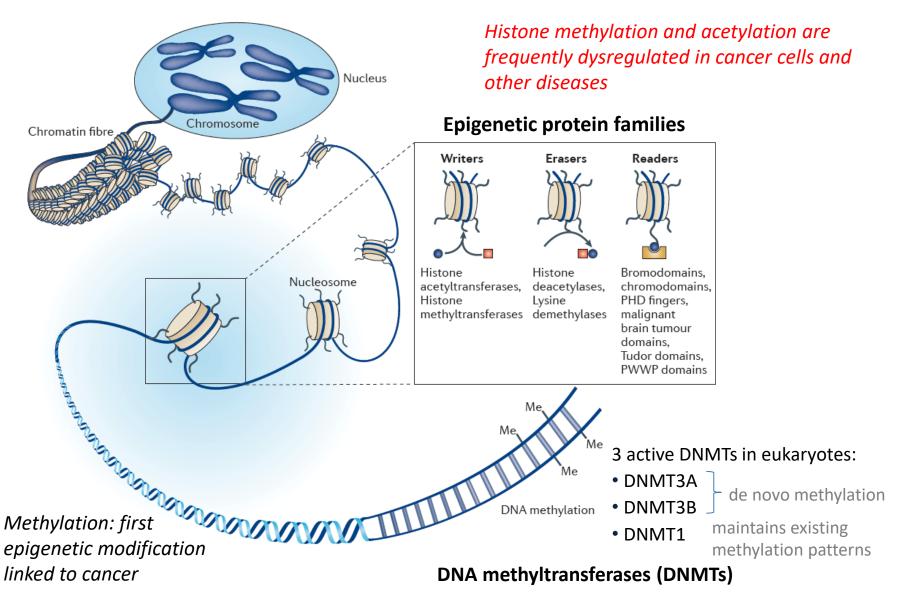
Food science

2 Springer

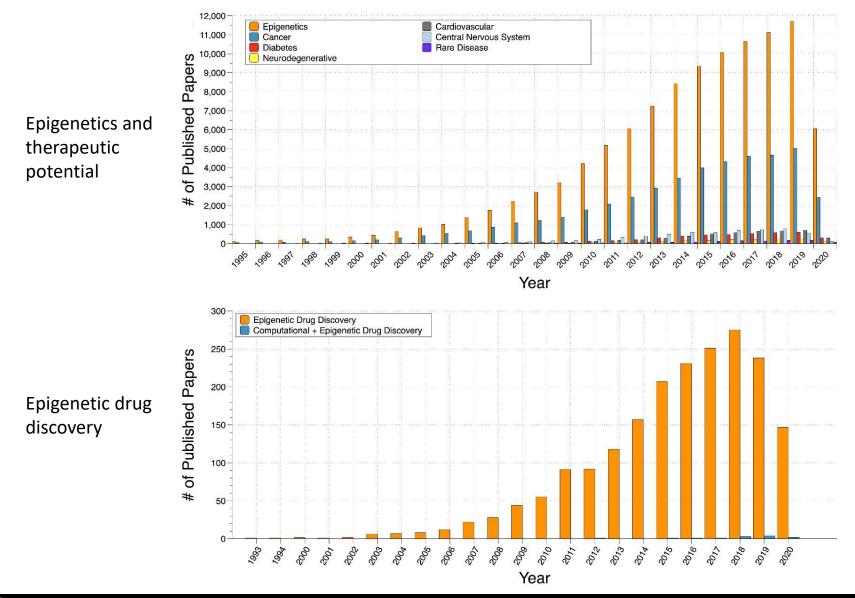
Progress in drug discovery and public health

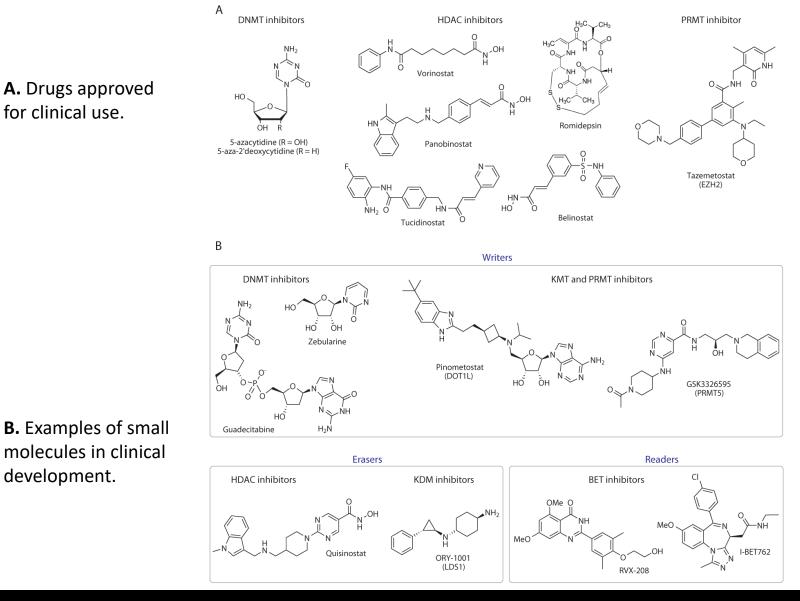
Epigenetic drug discovery Inhibitors of DNA methyltransferases

Epigenetics


Modifications that happen on chromosomes without alteration of the DNA sequence and that lead to a stable phenotype

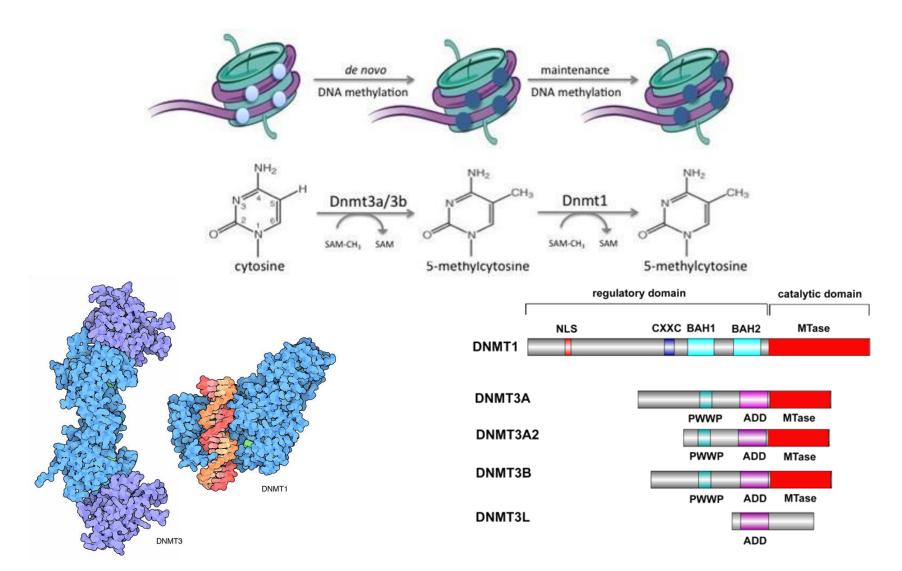
> MAAAAA www.celgene.com/the-potential-of-epigenetics


MMM


Epigenetic targets

Increased interest of epigenetic drug discovery

Epi-drugs in clinical use and clinical development

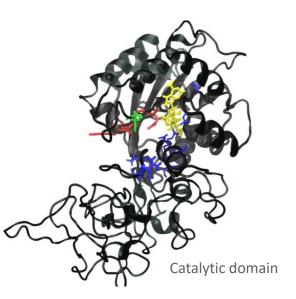

DNA Methylation

- Epigenetic change
- Addition of a CH₃ at C5 of cytosine
- Mediated by DNMTs

In cancer cells

- Overexpression of DNMTs
- Hypermethylation of tumor suppressor genes

DNA metiltransferases (DNMTs)

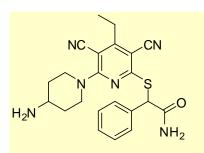


3D structures of DNMTs

Selected crystal structures of DNMTs

Р	DB code	Туре	Region	Res (Å)	Cofactor	Ligand
	3SWR	hDNMT1	Autoinhibitory linker, CXXC, BAH1/2, methyltransferase domain	2.49	SFG	
	4DA4	mDNMT1	BAH1/2, methyltransferase domain	2.60	SAH	5-methyl-2'- deoxycytidine
	ЗРТА	hDNMT1	Autoinhibitory linker, CXXC, BAH1/2, methyltransferase domain	3.60	SAH	
	ЗРТ6	mDNMT1	Autoinhibitory linker, CXXC, BAH1/2, methyltransferase domain	3.00	SAH	
	ЗРТ9	mDNMT1	BAH1/2, methyltransferase domain	2.50	SAH	

nature cancer

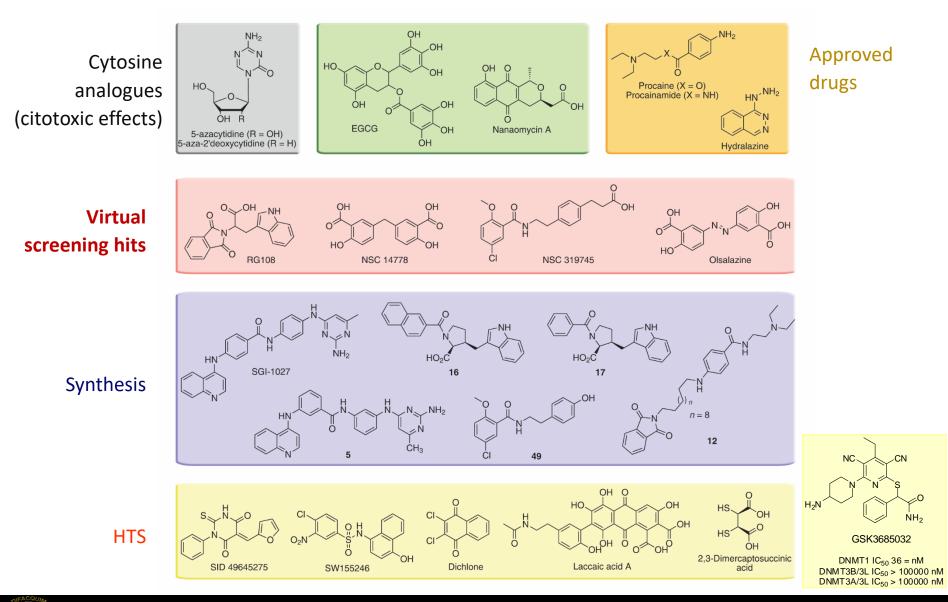

Explore content 🖌 About the journal 🖌 Publish with us 🖌 Subscribe

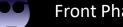
nature > nature cancer > articles > article

Article Published: 27 September 2021

Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia

Melissa B. Pappalardi 🖾, Kathryn Keenan, ... Michael T. McCabe 🖾 🔰 + Show authors


GSK3685032


DNMT1 IC₅₀ 36 = nM DNMT3B/3L IC₅₀ > 100000 nM DNMT3A/3L IC₅₀ > 100000 nM

In Epigenetic Technological Applications, Elsevier 2015 pp 265-290

Demethylating compounds

Goal of the research program Discovery and development of DNMT inhibitors and other epigenetic targets

Approach

Computational methods integrated with experimental validation.

Specific aims

- Development of predictive models.
- Virtual screening of compound libraries.

Databases of compounds with experimental activity

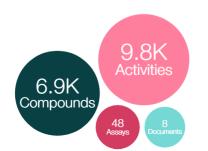
National Library of Medicine National Center for Biotechnology Information Pub Chem About Blog Submit Contact

Explore Chemistry

Quickly find chemical information from authoritative sources

Browse COVID-19 data available in PubChem

• 103,284,373 compounds.


- 271,135,693 bioactivity data.
- 9,643,220 publications.
- 3,173,654 patents.

	51			Search in Ch	nembl		
	3L			Examples: Imatin	nib erbB2 brain MDCK c1cc	ccc1N	Draw a Structure
UniChem ChEMBL-NTD	SureChEMBL	Malaria Inhibitor Prediction	Downloads	Web Services	More		

X

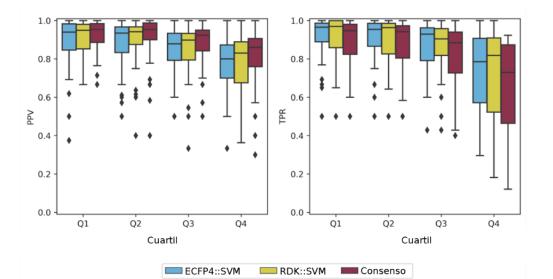
ChEMBL is a manually curated database of bioactive molecules with drug-like properties. It brings together chemical, bioactivity and genomic data to aid the translation of genomic information into effective new drugs.

>

Explore SARS-CoV-2 data

 $\mbox{Description:}$ Shows a summary of SARS-CoV-2 related ChEMBL entities and quantities of data for each item.

 $\ensuremath{\textbf{Instructions:}}$ Click on a bubble to explore a specific ChEMBL entity in more detail.


Epigenetic data in ChEMBL

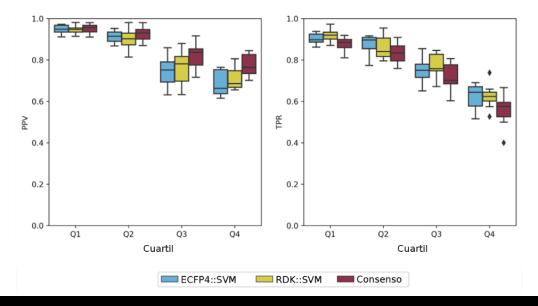
Structure-activity data vs. 55 epigenetic targets

Target	Function	Families (HGNC)	Cluster (manually annotated)	Molecules	Scaffolds	% Active
BAZ2B	Acetylated histone reader	PHD finger proteins, methyl-CpG binding domain containing	BRD	53	27	25
BRD2	Histone PTM reader	NA	BRD	277	91	87
BRD3	Histone PTM reader	NA	BRD	263	89	95
BRD4	Histone PTM reader	NA	BRD	643	259	80
BRD9	Histone PTM reader	NA	BRD	13	9	77
BRPF1	Histone PTM reader	PHD finger proteins, PWWP domain containing	BRD	27	15	89
DNMT1	DNA methyltransferase	Zinc fingers CXXC-type, seven-beta-strand methyltransferase motif containing	DNMT	248	194	60
DNMT3A	DNA methyltransferase	PWWP domain containing	DNMT	47	30	55
DNMT3B	DNA methyltransferase	PWWP domain containing	DNMT	40	22	50
CREBBP	Histone acetyltransferase	Zinc fingers ZZ-type, lysine acetyltransferases	HAT	180	65	64
EP300	Histone acetyltransferase	Zinc fingers ZZ-type, lysine acetyltransferases	HAT	73	52	78
KAT2A	Histone acetyltransferase	Lysine acetyltransferases, ATAC complex, SAGA complex, GCN5 related N-acetyltransferases	HAT	27	20	41
KAT2B	Histone acetyltransferase	Lysine acetyltransferases, ATAC complex, SAGA complex, GCN5 related N-acetyltransferases	HAT	121	40	61
NCOA1	Histone acetyltransferase	Basic helix-loop-helix proteins, lysine acetyltransferases	HAT	634	568	22
NCOA3	Histone acetyltransferase	Basic helix-loop-helix proteins, lysine acetyltransferases, trinucleotide repeat containing	HAT	564	517	32
HDAC1	Histone deacetylase	Histone deacetylases class I, EMSY complex, NuRD complex, SIN3 histone deacetylase complex	HDAC	3304	1418	90
HDAC2	Histone deacetylase	Histone deacetylases class I, EMSY complex, NuRD complex, SIN3 histone deacetylase complex	HDAC	942	427	84
HDAC3	Histone deacetylase	Histone deacetylases class I	HDAC	854	395	80
HDAC4	Histone deacetylase	Histone deacetylases class IIA	HDAC	704	348	69
HDAC5	Histone deacetylase	Histone deacetylases class IIA	HDAC	235	150	58

Jesús Naveja

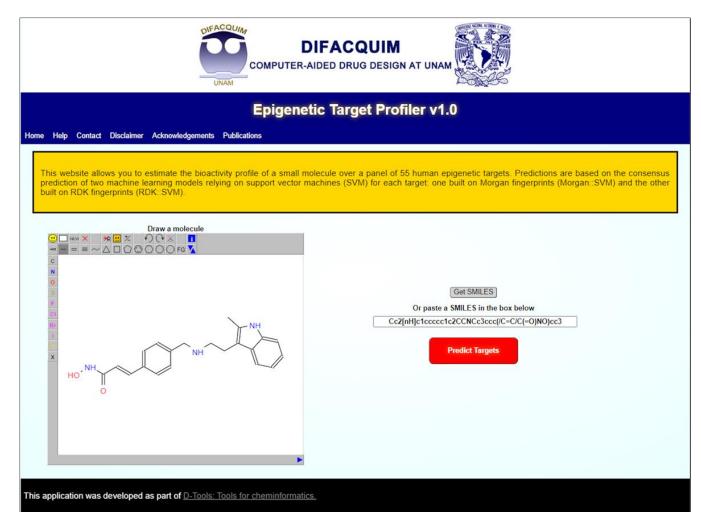
Development of predictive models

Binary classification


Precision: 0.92 - 0.81

Sensibility: 0.89 - 0.65

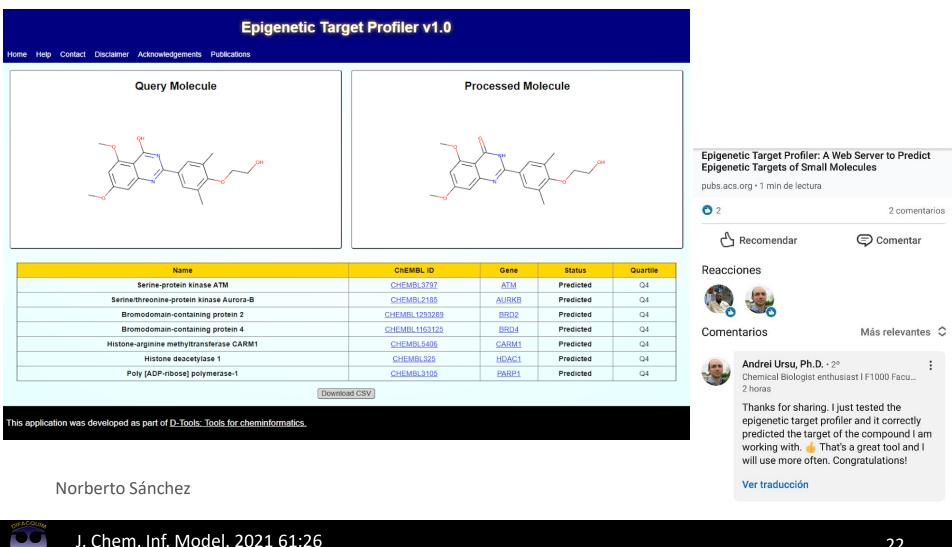
Target prediction


Precision: 0.95 - 0.77

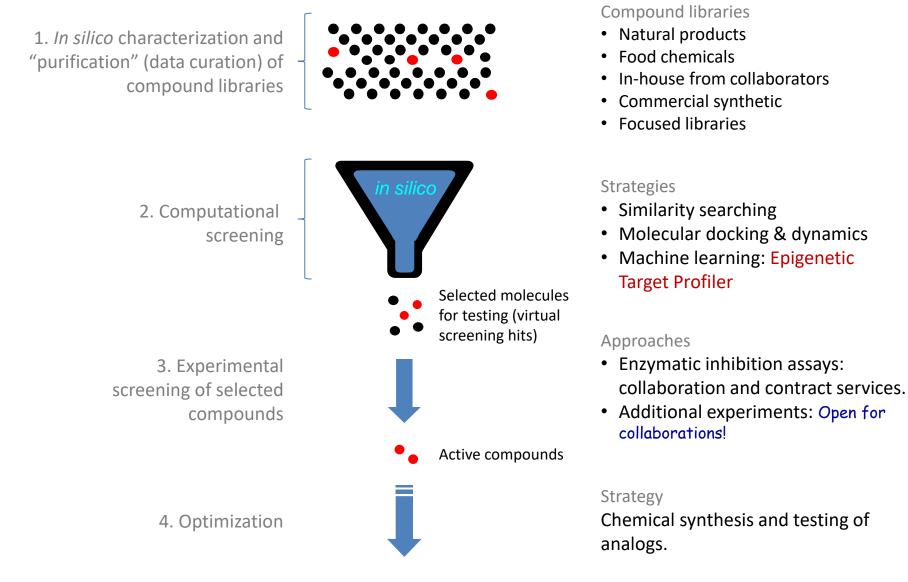
Sensibility: 0.89 - 0.56

Norberto Sánchez

Epigenetic target fishing


- Implementation of predictive models.
- Free webserver to predict the activity of small organic molecules with 55 epigenetic targets.

Norberto Sánchez


www.epigenetictargetprofiler.com

Epigenetic target fishing Inverse virtual screening with epigenetic targets

Screening of compound databases

Compound libraries

Natural products & food chemicals

~0.5 million compounds

~530 natural products

~22K food chemicals

Data sets from collaborators

Synthetic analogs of caffeic acid

Dra. Laura Alvarez (UAEM) Dr. Mayra Antúnez (UAEM)

Small molecules

Dr. Alexander Gagnon (UQAM, Canada)

Commercial general synthetic libraries

ZINC15

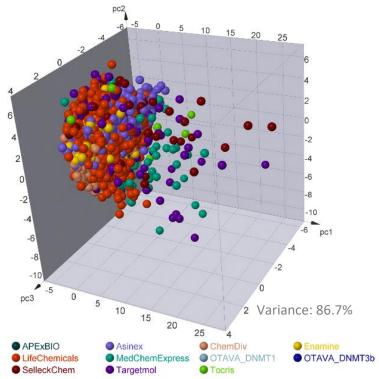
Welcome to ZINC, a free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable compounds in ready-to-dock, 3D formats. ZINC also contains over 750 million purchasable compounds you can search for analogs in under a minute.

Focused libraries

Name *	Number of compounds	\$
Bromodomain-containing protein 4 (BRD4) inhibitor library	401	
CREB binding protein (CREBBP) targeted library	576	
DNA (cytosine-5)-methyltransferase 1 (DNMT1) inhibitor library	466	
DNA (cytosine-5)-methyltransferase 3 beta (DNMT3b) inhibitor library	1261	
DOT1-like histone H3 methyltransferase (DOT1L) inhibitor library	622	
Enhancer of Zeste Homolog 2 (EZH2) Targeted Library	979	
Histone acetyltransferase (HAT) inhibitor library	814	
Histone deacetylase (HDAC) inhibitor library	803	

Epigenetic focused libraries: characterization

11 focused libraries.


- 56,680 initial compounds.
- 53,443 compounds after data curation.

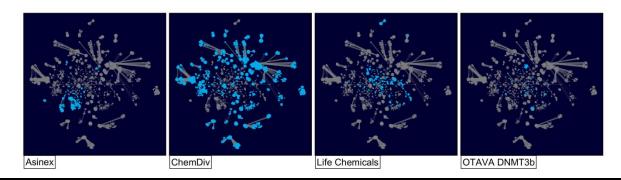
Company	Library size			
company	Initial	After curation		
ApeXBio	328	310		
Asinex	5 391	5 313		
ChemDiv	30 431	27 543		
Enamine	9 352	9 352		
Life Chemicals	7 019	7 011		
MedChemExpress	700	650		
OTAVA DNMT1	466	399		
OTAVA DNMT3B	1 261	1 230		
Targetmol	932	859		
Tocris	101	99		
SelleckChem	699	677		

Alexis Padilla

Visual representation of the chemical space

Principal component analysis of 6 properties of pharmaceutical interest.

- Compound libraries have drug-like properties.
- Have different diversity (MedChemExpress, Targetmol, SelleckChem).


Constellation maps Epigenetic focused libraries

n North star 10 0 20 0 >20 0 outh star

Representative molecular scaffolds of each "constellation"

Molecular libraries have:

- Different chemical structures.
- Cover different regions of the chemical space.
- Different diversity.

Front. Chem. 2019 7:510; Molecules 2022 27:2892

Computational screening of focused libraries

Approaches

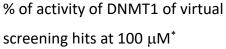
- 1. Epigenetic Target Profiler (ETP)
- 2. Docking with MOE
- 3. Docking AutoDock VINA
- **4. Re-scoring**: Extended connectivity interaction features (ECIF).*

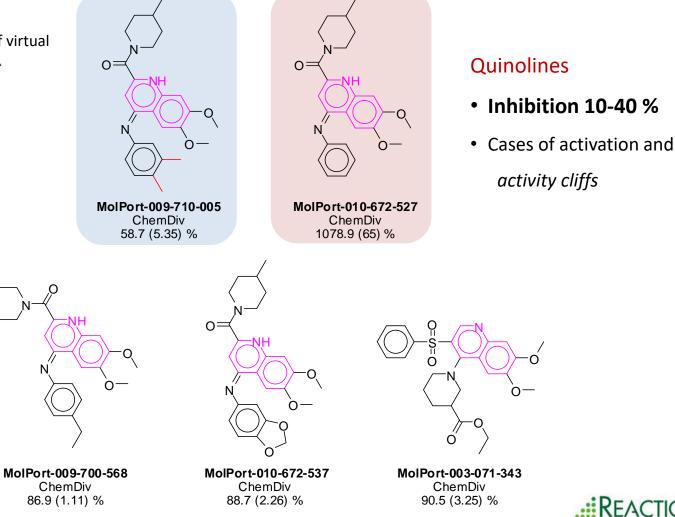
53,443 compounds (initial library size)

ETP

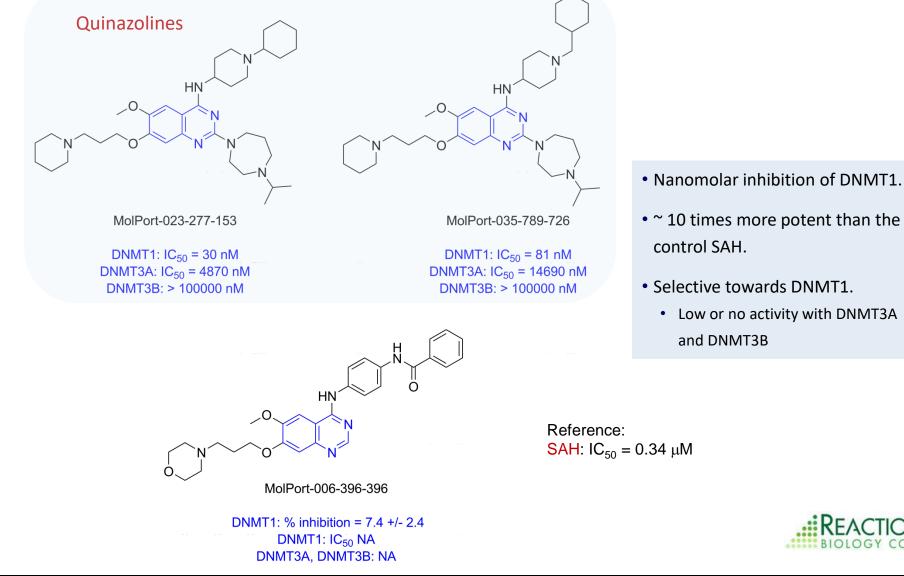
119 compounds with best ETP predictions.

Consensus docking and re-scoring


20 compounds selected for enzymatic inhibition assays.


		AutodockVINA		
Proveedor	ID	(kcal/mol)	ECIF	MOE (kcal/mol)
Enamine	Z991906684	-8.5	5.36	-8.02
Tocris	TC25	-9.8	5.3	-9.95
Targetmol	T2354	-9.4	5.36	-9.74
ChemDiv	C191-0147	-9	5.19	-8.57
ChemDiv	C769-0077	-8.8	5.28	-8.19
ChemDiv	F477-3331	-9.3	5.26	-8.33
ChemDiv	G119-0160	-8.7	5.37	-7.29
ChemDiv	L485-2681	-8.9	5.4	-8.64
ChemDiv	L485-2718	-9.4	5.48	-8.26
ChemDiv	L485-2735	-8.9	5.45	-8.12
ChemDiv	L485-2754	-10	5.56	-7.95
ChemDiv	L485-2759	-10.1	5.42	-8.16
MedChemEx	HY-10128	-7.7	5.52	-9.83
ChemDiv	L485-2761	-9.6	5.43	-8.48
ChemDiv	L485-2767	-9.8	5.23	-8.84

Alexis Padilla


Focused libraries: experimental screening

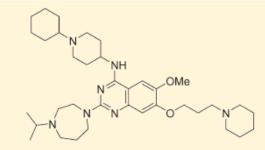
Focused libraries: experimental screening

Survey in the literature...

Quinazolines are also inhibitors of the epigenetic reader G9a

ARTICLE

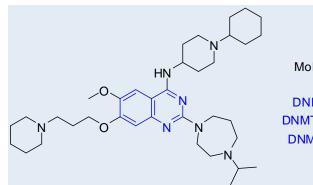
pubs.acs.org/jmc


Optimization of Cellular Activity of G9a Inhibitors 7-Aminoalkoxy-quinazolines

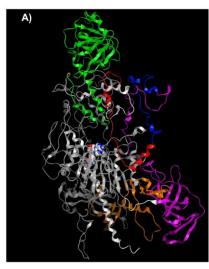
Feng Liu,^{+,||} Dalia Barsyte-Lovejoy,^{‡,||} Abdellah Allali-Hassani,[‡] Yunlong He,[§] J. Martin Herold,[†] Xin Chen,[†] Christopher M. Yates,[⊥] Stephen V. Frye,[†] Peter J. Brown,[‡] Jing Huang,[§] Masoud Vedadi,[‡] Cheryl H. Arrowsmith,[‡] and Jian Jin^{*,[†]}

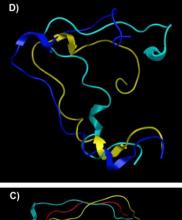
⁺Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

[†]Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada

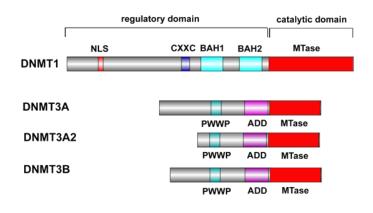

[§]Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States

G9a IC₅₀ = 6 nM Reduction of H3K9me2 in MCF7 cells: IC_{50} = 10 nM Cell toxicity (MCF7 cells): EC_{50} = 4,700 nM

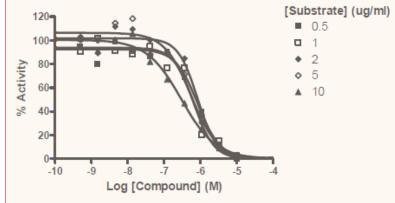

Progress to elucidate the mechanism of inhibition and selectivity


MolPort-023-277-153

DNMT1: IC₅₀ = 30 nM DNMT3A: IC₅₀ = 4870 nM DNMT3B: > 100000 nM


Computational (docking + dynamics) Interaction with the CXXX domain.

M. en C. Edgar López



Experimental It does not compete with DNA

 IC_{50} curves for DNMT1 at different substrate concentrations

MolPort-023-277-153 IC50 Data for DNMT1

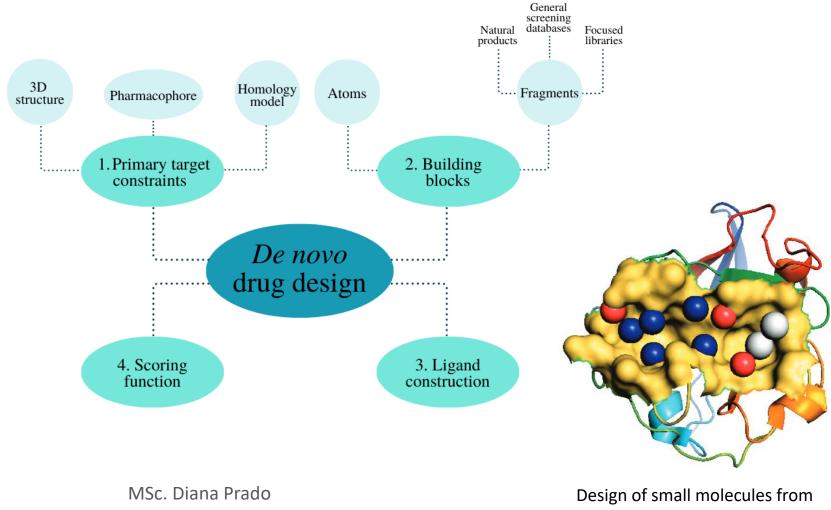
Towards multitarget epigenetic drug discovery

Artificial Intelligence in the Life Sciences 1 (2021) 100008

Methods & Protocols

An *in silico* pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition

Fernando D. Prieto-Martínez^a, Eli Fernández-de Gortari^{b,*}, José L. Medina-Franco^c, L. Michel Espinoza-Fonseca^{d,*}


Databases	Classification Models Selection	Generator	Virtual Screening	Hit Selection
Structural information HDAC & DNMT inhibitors activity. • Experimentally based • Public repositories ChEMBL: PubChem Data preprocessing Open Babel Curation, Filtering. Inactive compounds DUDE decoys DeepCoy Class labeling Data Representation RDKit Morgan FP Physicochemical properties MW,TPSA,RB, HBD(A), Csp ³	Models Training ScikitLearn RFC DTC LRC XGBC Parameter tuning and Validation Scikit learn Grid search Ten-fold cross-validation Model selection ROC AUC, Accu, STD, Implementation, etc.	Pretrained ANN- Model Learning continuous and data-driven Molecular descriptors Scoring Function Multi-objetive particle swarm latent space optimization In-house classification models integration Prebuilt RDKit functions Seed Selection Literature sources	Virtual Compound Positive: Generated Negative: DeepCoy Data preprocessing Curation, filtering Scaling, test/trainsets Models Training XGBoost Parameter tuning and validation Grid search Ten-fold cross- validation ROC AUC Virtual Screening COCONUT	Data Processing Probability and PCP filtering Hit filtering Classifier probability Cluster selection Hit selection Flexible pharmacophoric alignment Molecular docking Protein-ligand interactions Molecular dynamics
Scaling, test/trainsets Scikit learn				Collabora

Collaboration with Dr. Eli Fernandez

Perspective: De novo design

Design of small molecules from scratch based on anchor points in the binding site Chemical space

Biological space

Human and others

Methods

frontiers in Drug Discovery

SPECIALTY GRAND CHALLENGE published: 28 July 2021 doi: 10.3389/fddsv.2021.728551

Grand Challenges of Computer-Aided Drug Design: The Road Ahead

José L. Medina-Franco*

DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico

34

Chemical space

- Expand the medicinally relevant chemical space.
- Rational design and screen of ultra-large chemical libraries.
- Repurpose existing libraries (drugs and *in-house* collections).
- Rescue missing hits and lead compounds from screening libraries.
- Explore neglected regions of chemical space.

Biological space

- Improve multi-target drug design and polypharmacology.
- Explore "dark" targets and identify novel promising regions in the genome.

- Improve targeting protein-protein interactions.
- Continue investigating targets associated with rare and neglected diseases.

Methodological challenges

How to conduct the search for new and better drugs at the intersection of the chemical and biological spaces?

- Computational chemogenomics.
- Automated *de novo* design and computational fragment screening.
- Improve property prediction, including ADME and toxicity.
- Modeling large and complex systems.
- Continue to improve molecular docking and scoring.
- Improve the hit rate of virtual screening and strategies to automatically propose high quality hits.
- Synergize with other methods: consensus approaches.
- Ensure data curation and quality.

Human factor and other challenges

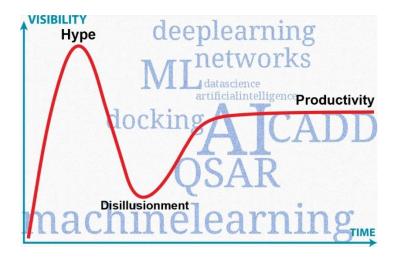
- Communication and human interaction.
 - Improve multidisciplinary research: reach common objectives from different perspectives.
 - Enhance communication across research teams; avoid duplicating efforts.
- Dissemination and data sharing.
 - Rigorous dissemination of information and high-quality data.
 - Transparency and reproducibility.
 - Open science vs. securing intellectual property.
- Education and training.
 - Individuals and teams.
 - Set up realistic expectations of computational methods.

Grand challenge

Use cheminformatics rationally beyond the hype

F1000 Research

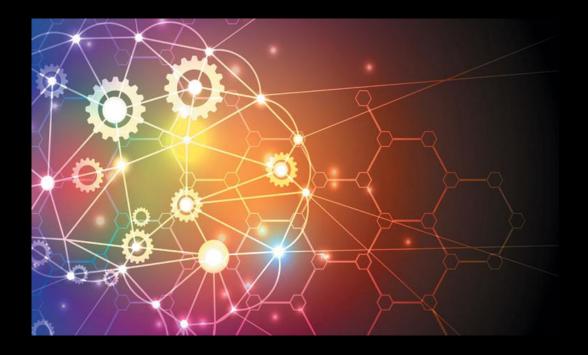
F1000Research 2021, 10(Chem Inf Sci):397 Last updated: 21 SEP 2021



OPINION ARTICLE

Rationality over fashion and hype in drug design [version 1;

peer review: 2 approved]


José L. Medina-Franco¹, Karina Martinez-Mayorga², Eli Fernández-de Gortari³, Johannes Kirchmair¹, Jürgen Bajorath⁵

"Unrealistic expectations are a quick road to disappointments"

Summary

Take home messages

- Chemoinformatics: an independent discipline that impacts many areas of chemistry.
- Discovery of epi-drug candidates.
 - Development of *Epigenetic Target Profiler*.
 - Virtual screening identifies low micromolar and selective DNMT1 inhibitors.
- Challenges of chemoinformatics and CADD.
 - Revisit and expand chemical and biological spaces.
 - Several methodological challenges: data quality is a must.
 - Effective communication and education/training: beware of the "artificial intelligence extasy".

Acknowledgments

DIFACQUIM's students & alumni

- Norberto Sánchez
- Jesús Naveja
- Fernando Prieto
- Edgar López
- Euridice Juárez
- Marisa Santibáñez
- Claudia Oviedo
- Alexis Flores
- Jocelyn Salazar
- Diana Prado

Collaborators

Eli Fernádez INL, Portugal

Massimo Bertinaria Università degli Studi di Torino

Alexandre Gagnon Université du Québec à Montréal

Carlos Velazquez University of Alberta, Canada

Paola Arimondo CNRS, France

Laura Alvarez UAEM, Mexico

Mayra Antúnez UAEM, Mexico

Keith Robertson Mayo Clinic, USA Hyang-Min Byun New Castle, UK

Mark Muller Topogen, Colorado, USA

Alfonso Dueñas INCAN, Mexico

Federica Catti Arkansas State University

Funding

miztli

CONACyT 282785 PAPIIT IA203718, IN201321 PAIP 5000-9163 Miztli Supercomputer (UNAM)

ARKANSAS STATE UNIVERSIT

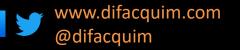
Colloquium Chemoinformatics and Artificial Intelligence

Progress and Challenges to Develop Bioactive Compounds

SAVE THE DATE!

JUNE 15-17, 2022

Organizers: Secretariat of Graduate Studies and Research School of Chemistry, National Autonomous University of Mexico (UNAM) DIFACQUIM research group 16 speakers.


Progress and challenges to develop peptides, natural products, drug candidates.

Speakers from:

Academia, industry and other research institutions.

Registration

