
DIMERIC STATES OF TRANSMEMBRANE SEGMENTS OF THE DDR1 PREDICTED BY ATOMISTIC MODELING

E. Kozlov^{1,2}, A. Kuznetsov^{1,2}, R. Efremov^{1,2}

¹Moscow Institute of Physics and Technology (National Research University), Russia; ²Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Russia;

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery

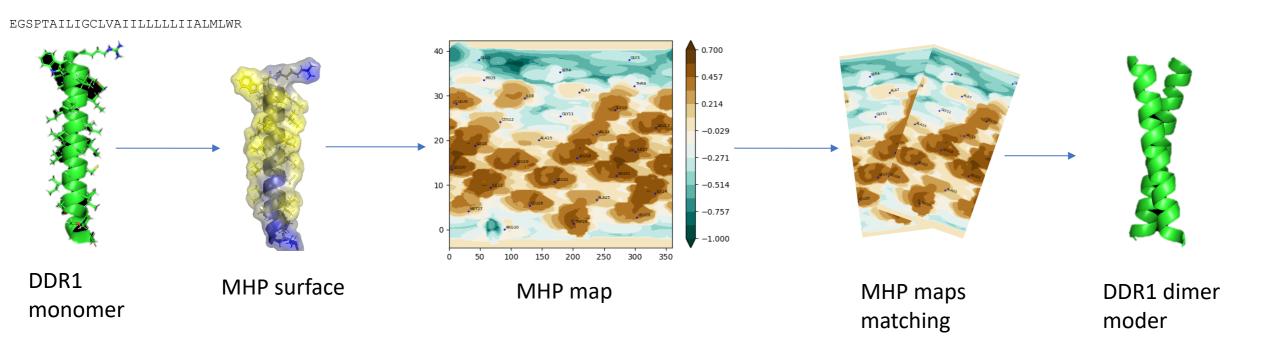
Object of study

DDR1 monomer structure

DDR1 dimers

Goals

Prediction of possible dimeric structures of DDR1 TM domain


- homology modeling
- de novo prediction: PredDimer (https://preddimer.nmr.ru)
- stability verification of the obtained structures
- stability quantification

Methods: homology modeling

DDR1 dimer model based on known structure of homological protein

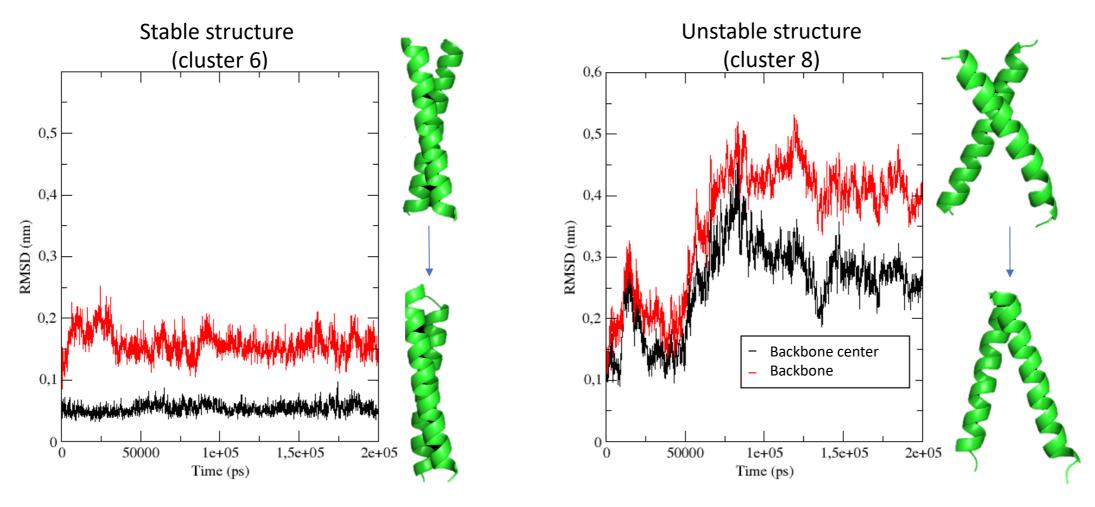
Methods: PredDimer

Prediction results

Homology

2 structures based on ErbB2

DDR1 EGSPTAILIGCLVAIILLLLIIALML-WR

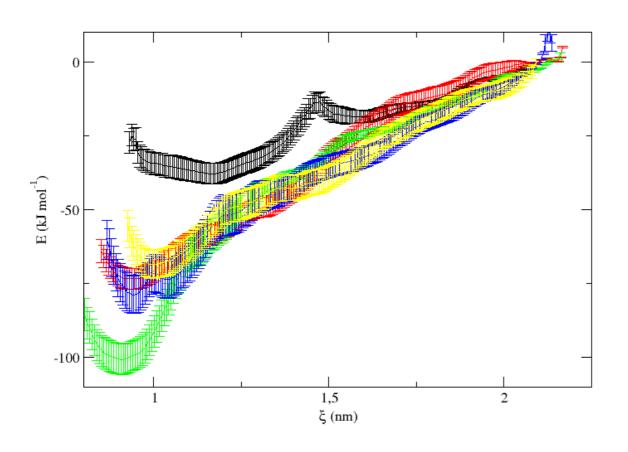

ERBB2 RASPLTSIISAVVGILLVVVLGVVFGILIK

RTK	Identical	Similar	Similar with unitary gaps	Maps MSE
PDGFRB	9	24	14	0.129
ERBB2	7	24	27	0.098
FGFR3	9	20	17	0.122
EPHA2	9	20	21	0.131
EPHA1	6	20	13	0.118
EGFR	7	18	19	0.113
NTRK1	6	18	10	0.142
ERBB3	4	18	11	0.140
ERBB4	3	18	19	0.112

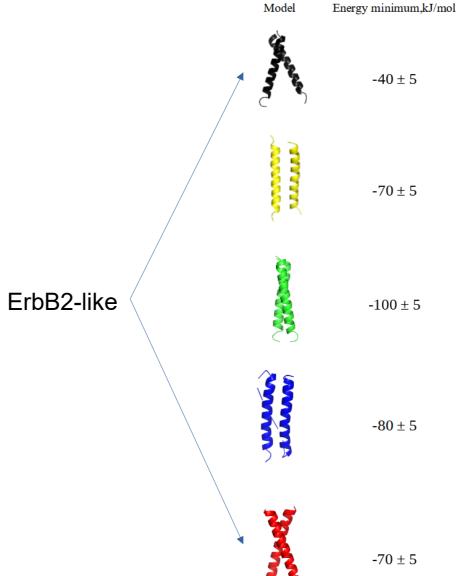
PredDimer 9 clusters of structures

	Dimerization interface	Cross angle	Fscor
	G_VA_LL_L_	-55	2,8
*	AIGC_VALL	-45	3,3
	I_GC_AI_L_I_L_	-20	2,6
	S_AI_G_VA_L_LL_AL_L	5	3,1
	EG_T_L_L_I_L_I_M_	30	1,7
	_G_TI_LI_LI_ML	15	2
*	AI_G_V_L_LL	35	2,8
	I_G_V_L	60	2,8
	A_L_LLLW	40	2,4

Stability verification of obtained structures



Root-mean-square deviation during molecular dynamics (Gromacs, POPC bilayer, 200ns)


Stability verification of obtained structures

	Dimerization interface	Cross angle	Fscor
	G_VA_LL_L	-55	2,8
ErbB2-active-like	AIGC_VALL	-45	3,3
	I_GC_AI_LI_L_	-20	2,6
	S_AI_G_VA_L_LL_AL_L	5	3,1
	EG_T_L_I_L_I_M_	30	1,7
	GTILILIML	15	2
ErbB2-inactive-like	AI G V L LL	35	2,8
	I_G_V_L	60	2,8
	A_L_LLLW	40	2,4

Stability quantification

Free energy profiles of stable structures (USMD, 25-32 windows, 10 ns/window)

Results

- Significant similarity between DDR1 & ErbB2 TMDs → 2 structures by homology
- 9 structures *de novo* (PredDimer)
- 5 models proved to be stable in POPC bilayer, including 2 ErbB2-like
- Quantification of stable structures

Prospects:

- Investigate ErbB2's interceptor peptides influence on DDR1
- Examine ErbB2-DDR1 heterodimerization
- Study polar mutations effects on dimerization

Thank you for your attention