HOW DO ENZYMES RECOGNIZE SUBSTRATES AND INHIBITORS: STRUCTURAL AND ELECTRON DENSITY ASPECTS

Maria G. Khrenova

 ¹ Lomonosov Moscow State University
 ² Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences

XXVIII Symposium on Bioinformatics

and Computer-Aided Drug Discovery

Enzyme-substrate interactions

What is the substrate activation in the active site of the enzyme?

https://en.wikipedia.org/wiki/Enzyme_catalysis https://www.thesciencehive.co.uk/enzymes-alevel

From local minima to ensembles of states

Distributions and average values

Breakout: GPU-based DFT code

Terachem:

- QM subsystem: DFT(hybrid functional/6-31G**), ~100 atoms
- Benchmark (energy + gradient)
 - NVIDIA 1070 TI 2 min
 - ➢ NVIDIA 3070 TI − 1 min.

Nucleophilic attack in enzymatic reactions

EC 3 Hydrolases:

- EC 3.1 Acting on ester bonds;
- EC 3.4 Acting on peptide bonds;
- EC 3.5 Acting on C-N bonds, other than peptide bonds;
- EC 3.7 Acting on C-C bonds.

Nucleophile:

- H₂O
- 🔶 OH-
- 🛕 OH of Ser
- OH of Thr
- 할 SH of Cys

Case 1: NDM-1 metallo-β-lactamase

Hydrolysis of antibiotics related to the drug resistance

Case 1: NDM-1 metallo-beta lactamase

Case 2: Penicillin binding protein 2

J. Tomberg et. al, Antimicrob. Agents Chemother., 2013

k₂/K_s for PBP2 from different *Nisseria gonorrhoeae* strains for ceftriaxone

strain	k_2/K_s , mM ⁻¹ s ⁻¹		
FA19	1710 ± 90		
35/02	11.3 ± 0.4		
H041	0.74 ± 0.03		

QM/MM MD simulations of the ES complexes

QM/MM MD simulations of the ES complexes

Case 3: Main protease M^{Pro} from SARS-CoV-2

What is the origin of substrate specificity?

Efficiency of the substrate activation might be the reason

How to evaluate substrate activation?

$$n ES \stackrel{K}{\leftarrow} r ES$$

 Criteria of assignment of conformations to either reactive or nonreactive

Laplacian of electron density

$$\nabla^2 \rho(\mathbf{r}) = \frac{\partial^2 \rho(\mathbf{r})}{\partial x^2} + \frac{\partial^2 \rho(\mathbf{r})}{\partial y^2} + \frac{\partial^2 \rho(\mathbf{r})}{\partial z^2}$$

 $\nabla^2 \rho(\mathbf{r}) > 0$ – electron density depletion regions $\nabla^2 \rho(\mathbf{r}) < 0$ – electron density concentration regions

* J. Phys. Chem. (1989) V. 93. P. 5120-5123

Criterion to discriminate reactive and nonreactive species

 $\nabla^2 \rho$ (**r**) maps in the S (Cys145) and C=O (substrate) plane Blue isolines correspond to the ED depletion regions, $\nabla^2 \rho$ (**r**)>0 Red isolines correspond to the ED concentration regions, $\nabla^2 \rho$ (**r**)<0

Criteria to discriminate reactive and nonreactive species

All three geometry criteria should be satisfied together

Substrate specificity and rES \leftrightarrow nES equilibrium

Substrate	χ, %	k _{cat} (calc.)	k _{cat} (exp.)	
S-P2Leu	22.4	1	1	
S-P2Ile	10.2	0.46	0.45	
S-P2Ala	0.6	0.03	<0.1	
*				

* values relative to S-P2Leu

 $k_{cat}(AA) = k_{cat}(Leu)\chi(AA)/\chi(Leu)$ Results obtained at the QM(PBE0-D3/6-31G**)/MM(CHARMM)

Example from the literature data

Research Article pubs.acs.org/acscatalysis Comparative Theoretical Study of the Ring-Opening Polymerization of Caprolactam vs Caprolactone Using QM/MM Methods Brigitta Elsässer,* Iris Schoenen, and Gregor Fels Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany

Caprolactam

QM(PBE0/cc-pvdz)/MM

Caprolactone

QM(PBE0/cc-pvdz)/MM

On-the-fly identification of the reactive and non-reactive species from MD trajectories

Scientific collaborations

Prof. A.V. Nemukhin and members of Laboratory of Quantum Chemistry and Molecular Modeling

Prof. V.G. Tsirelson and members of Quantum Chemistry Department

FEDERAL RESEARCH CENTRE **«FUNDAMENTALS OF BIOTECHNOLOGY»** OF THE RUSSIAN ACADEMY OF SCIENCES

Prof. M.G. Khrenova and members of Group of Molecular Modeling

Financial support

Russian Science Foundation

