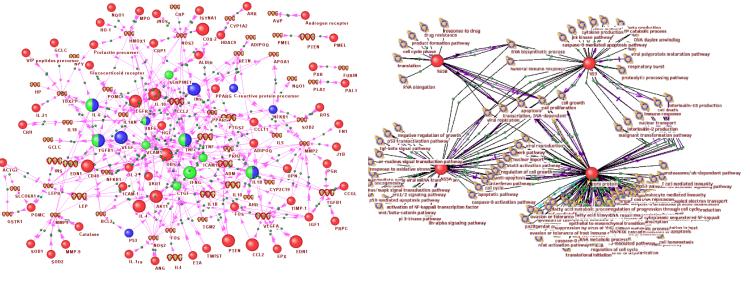
Way2Drug

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery

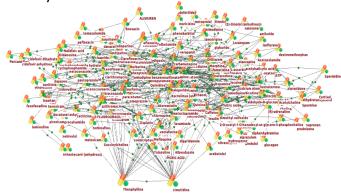
ANDSYSTEM AUTOMATED RECONSTRUCTION OF GENE **NETWORKS FOR OMICS-DATA INTERPRETATION IN** MEDICAL AND BIOLOGICAL RESEARCH

Ivanisenko V.A., Demenkov P.S. Ivanisenko T.V., Ivanisenko N.V., Antropova E.A., Adamovskaya A.V., Revva P.M., Lavrik I.N., Kolchanov N.A.

ICG SB RAS NSU Novosibirsk 2022


Gene networks - a graph of knowledge about the molecular genetic mechanisms of diseases

A gene network is a group of genes that function in a coordinated manner, controlling any phenotypic traits of an organism (Kolchanov et al, 2013) The interactions between genes in the gene network are carried out through their primary and secondary products (RNA, proteins, metabolites).


An associative gene network is an extension of a gene network.

Additional network members:

- environmental factors that are not a product of the functioning of genes (drugs, nutrition, etc)
- members of a higher level of organization than individual molecular compounds (diseases, biological processes, phenotypic traits, etc).

A gene network describing the genetic regulation of the expression of genes potentially involved in the comorbid state of asthma and hypertension (Saik et al, 2018) An associative gene network of interactions of hepatitis C virus proteins with human biological processes (Saik et al, Virus Res 2016)

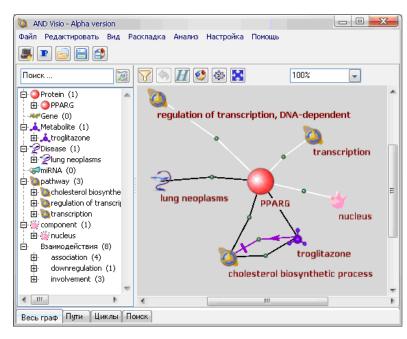


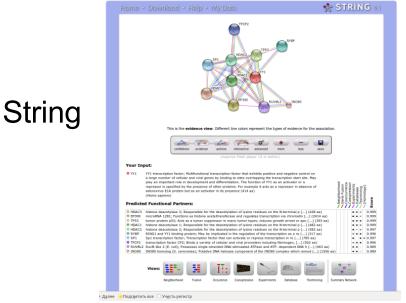
An associative gene network of drugdrug interactions Gene networks are often used in:

- Interpretation of omix data (genomic, transcriptomic, proteomic, metabolomic and epigenomic)
- Identification of disease biomarkers
- Search for pharmacological targets
- Repurposing drugs
- etc.

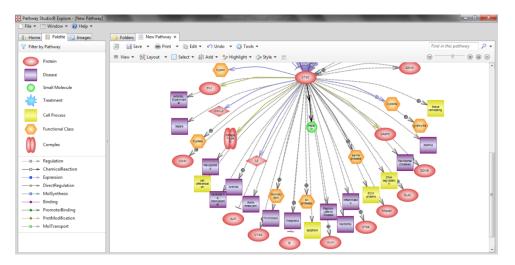
PubMed Indexing Statistics

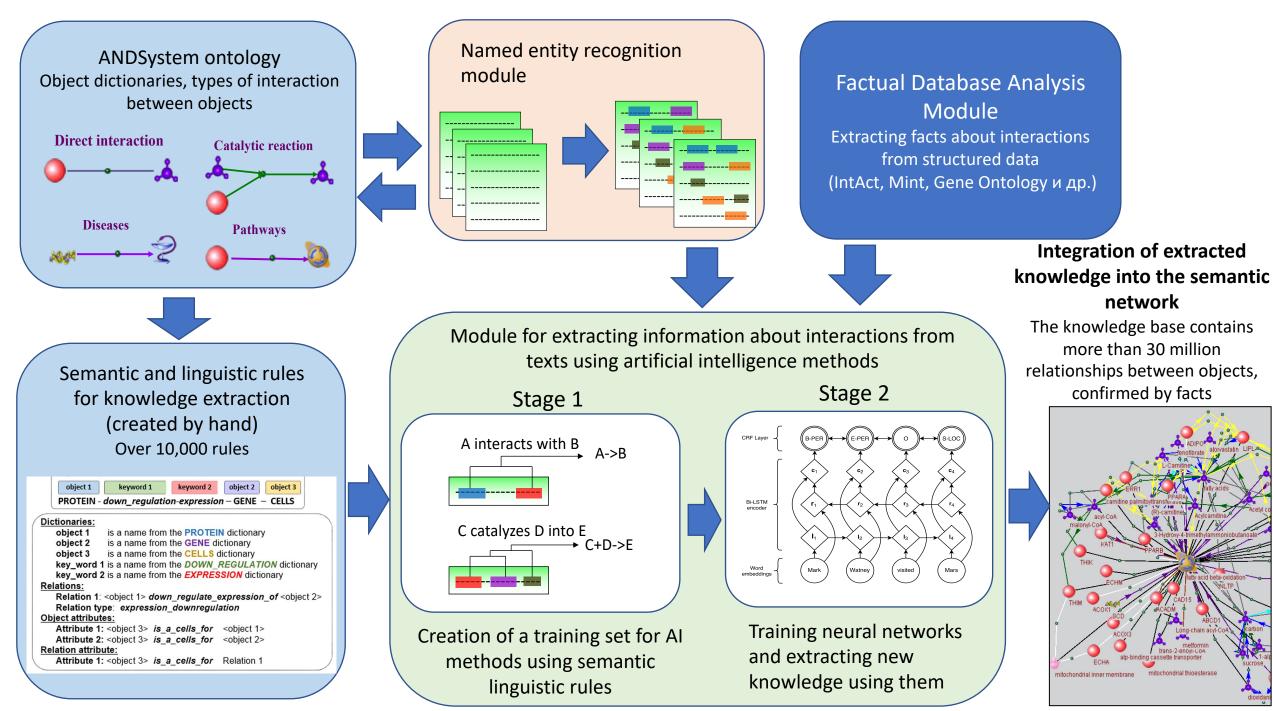
- PubMed contains about 30 million abstracts.
- The number of publications grows about 1 million over the years.
- To process such large amounts of information necessary to use methods of automated knowledge extraction.

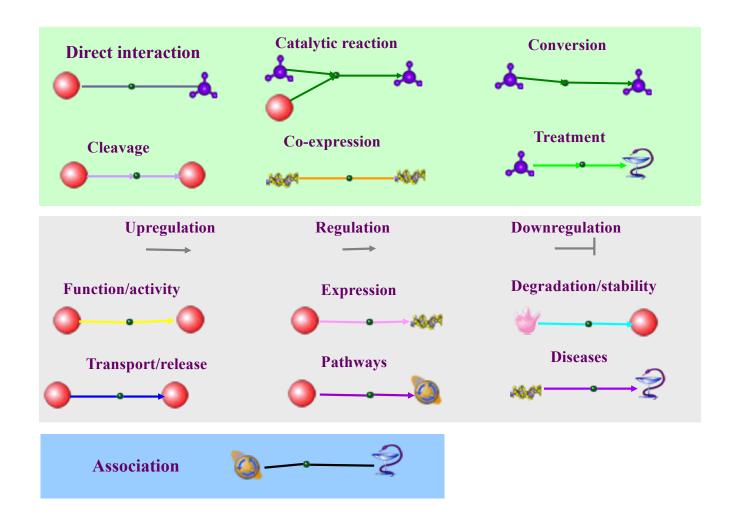

Years


Cognitive software tools used for automated reconstruction of molecular-genetic networks

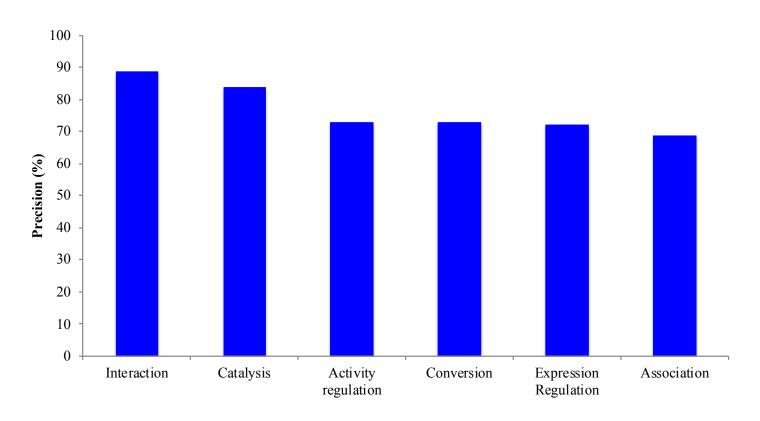
- Ontological description of the subject area (formalization of extracted knowledge)
- Automated knowledge extraction with text mining
- Integration of extracted knowledge and their presentation in the knowledge base
- User access to the knowledge base



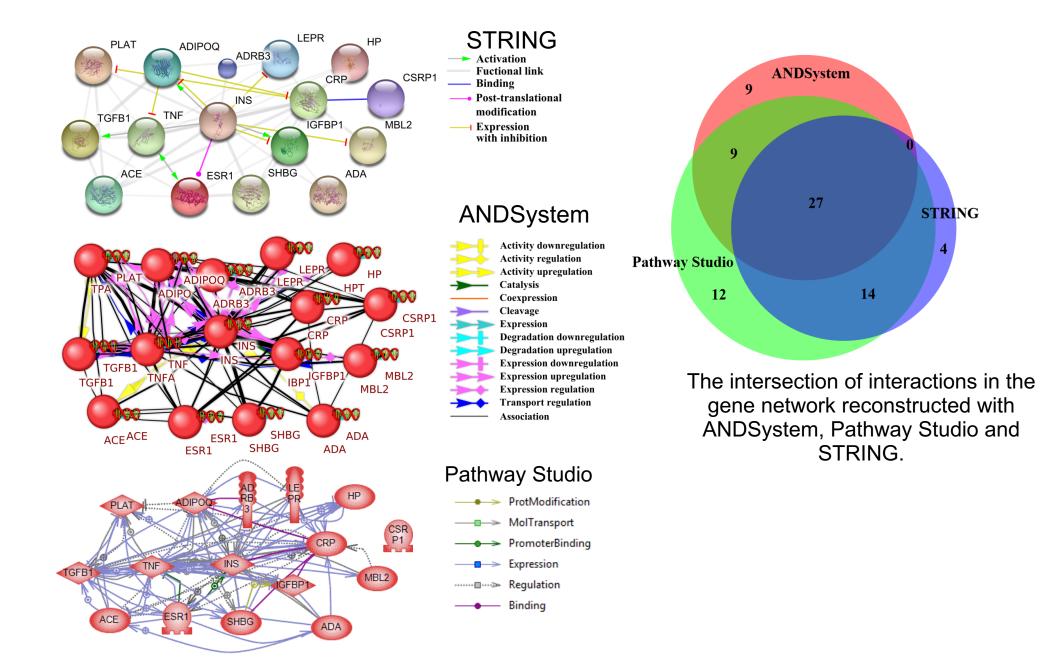

Ivanisenko et al, BMC Bioinformatics. 2019 and more than 15 additional publications


Pathway Studio

Object dictionaries and interaction types used in ANDSystem


Physiology				
Organisms	21 982			
Cells/tissues	644 304			
Phenotype objects				
Diseases	15 478			
Phenotypic traits	23 224			
Drug side effects	5 226			
Molecular genetic objects				
Genes	7 946 479			
Proteins	550 657			
Metabolites	42 594			
MicroRNAs	28 512			
Drugs	2 430			
Biological processes/Pathways	122 297			
Cell components	3 680			

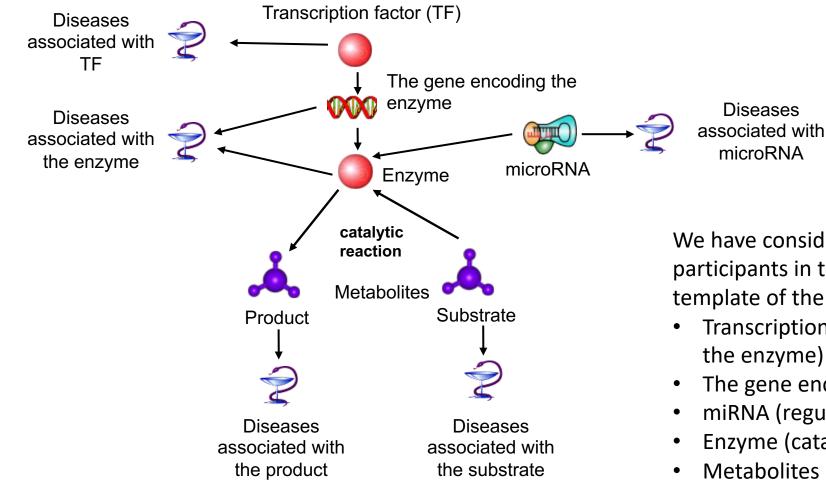
ANDSystem knowledge base statistics


association	7 767 711	activity regulation	80 576		
involvement	4 217 997	activity downregulation	295 160		
interaction	625 594	activity upregulation	227 483		
expression regula	tion 559 599	degradation regulation	3 222		
expression upregu	ulation 157 533	degradation downregulat	<i>tion</i> 55 215		
expression downregulation 129 273		degradation upregulation	34 004		
pathway regulation 529 997		miRNA regulation	23 576		
pathway upregula	tion 375 514	coexpression	6 617		
pathway downreg	ulation 374 856	cleavage	7 141		
transport regulation	on 382 373	catalyze modification	3 089		
treatment 188	8 264	conversion	27 078		
catalyze	518 114				

Evaluation of the accuracy of the extraction of facts for different types of interactions using semantic and linguistic templates

	PRESICION	RECALL
FULL-LENGTH ARTICLES	90.34%	78.9%
PUBMED ABSTRACTS	88.81%	73.8%

Comparison of different text-mining systems

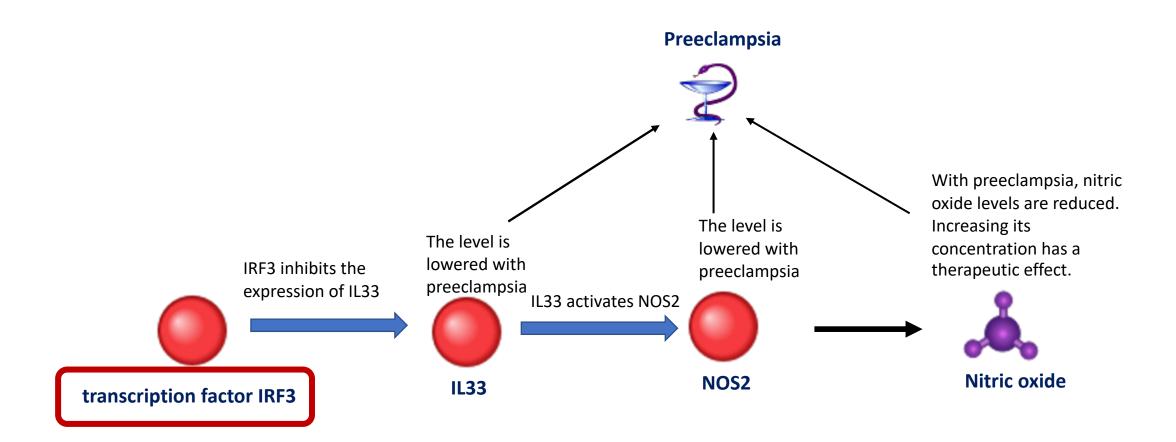

The use of ANDSystem for the interpretation of metabolomic data aimed at analysing the genetic regulation of metabolic processes

- Currently, metabolomic analysis is one of the widely used omics technologies in various areas of biomedical research
- However, the interpretation of metabolomic data in almost all studies is limited to the search for overrepresented metabolic processes. At the same time, such important processes as genetic regulation of metabolic processes are overlooked
- Knowledge of the genetic regulation of overrepresented processes may make it possible to clarify the relationship between the factors acting on the organism and the response observed in the form of a perturbated metabolic process.

To support genetic regulation analysis, ANDSystem provides a function that allows user to search for significant pathways of genetic regulation of metabolic processes using pathway templates.

Schematic representation of genetic regulatory pathways and associated diseases

Template of genetic regulation pathways



We have considered the distribution of diseases by participants in the regulatory pathways, given by the template of the following type:

- Transcription factor (regulates the gene encoding the enzyme)
- The gene encoding the enzyme
- miRNA (regulates enzyme production)
- Enzyme (catalyses a reaction)
- Metabolites (product and substrate)

We called such templates frame models of regulatory pathways.

An example of a pathway for preeclampsia

The pathway includes the transcription factor IRF3, the IL33 protein, the NOS2 enzyme, and the nitric oxide metabolite. The last three participants are associated with preeclampsia. The model suggests that the IRF3 transcription factor can also be associated with preeclampsia.

An example of using ANDSystem to interpret metabolomic data

- Zhang et al, 2013 published the results of a metabolomic analysis of the urine of hepatitis C virus (HCV) patients by high-throughput ultra-performance liquid chromatography–mass spectrometry (UPLC–MS). The authors identified 20 urinary differential metabolites and calculated KEGG overrepresented metabolic pathways.
- Using the ANDSystem, we reconstructed regulatory pathways leading from human proteins that HCV
 proteins interact with to genes involved in these KEGG pathways. Thus, the molecular genetic mechanism
 of the effect of viral proteins on the observed changes in the functioning of metabolic pathways can be
 described.

List of top 4 overrepresented KEGG pathways (Zhang et al, 2013):

- 1. Aminoacyl-tRNA biosynthesis
- 2. Nitrogen metabolism
- 3. Phenylalanine metabolism
- 4. Citrate cycle (TCA cycle)

Zhang AH, Sun H, Han Y, Yan GL, Yuan Y, Song GC, Yuan XX, Xie N, Wang XJ. Ultraperformance liquid chromatography—mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets. Analytical chemistry. 2013 Aug 6;85(15):7606-12.

ANDSystem templates for virus-host interaction pathways

Template name	Template description*
P1-PPI 1	Vp – PPI –> Kp
P2 – PPI 2	Vp – PPI –> Hp – PPI –> Kp
P3 – Activity/Stability regulation 1	Vp – PPI –> Hp – Act/Stab/Pr/PPM/Tr –> Kp
P4 – Expression regulation 1	Vp – PPI –> Hp – Exp reg –> Kg – Exp –> Kp
P5 – Expression regulation 2	Vp – PPI –> Hp – Exp reg –> Hg – Exp –> Hp– Exp reg –> Kg – Exp –> Kp
P6 – Expression + Activity regulation	Vp – PPI –> Hp – Exp reg –> Hg – Exp –> Hp – Act/Stab/Pr/PPM/Tr –> Kp
P7 – Expression + PPI regulation	Vp – PPI –> Hp – Exp reg –> Hg – Exp –> Hp – PPI –> Kp

***Objects:**

Vp - HCV proteins

Kp - KEGG metabolic pathway proteins

Kg - KEGG metabolic pathway genes

Hp – any host proteins involved in the interactions

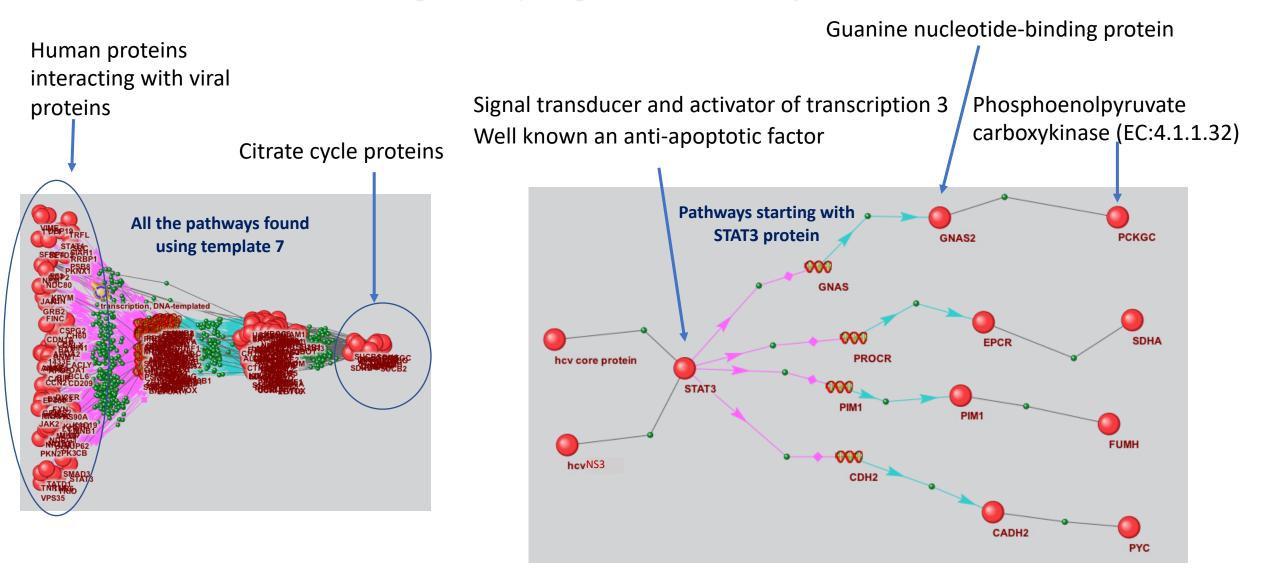
Hg – any host genes involved in the interactions

Interactions:

PPI-protein-protein interactions

Act/Stab/Pr/PPM/Tr – regulation of activity or stability, or proteolysis, or post

translational modifications, or transport (release).


Exp reg - regulation of gene expression.

Exp – gene expression (protein production).

Statistical significance of associations between virus-host regulatory pathways and KEGG metabolic processes

Virus-host pathway template (Pi)	Aminoacyl-tRNA biosynthesis		Nitrogen metabolism		Phenylalanine metabolism		Citrate cycle	
	P value	FDR	P value	FDR	P value	FDR	P value	FDR
P ₁	-	-	-	-	-	-	0.004	0.015
P ₂	10e-08	2.5e-06	0.35	0.46	0.26	0.38	0.0005	0.004
P ₃	0.44	0.55	0.56	0.63	0.0013	0.008	0.28	0.38
P ₄	0.96	0.96	0.15	0.28	0.066	0.15	0.18	0.32
P ₅	0.72	0.75	0.24	0.37	0.0045	0.015	0.049	0.12
P ₆	0.66	0.71	0.2	0.33	0.005	0.015	0.033	0.09
P ₇	10e-07	1.25e-05	0.085	0.17	0.53	0.63	0.0027	0.013

An example of regulatory pathways found using P7 template (Expression regulation + PPI regulation) targeted at Citrate cycle

Conclusion

ANDSystem implements a complete cycle of knowledge engineering describing the relationship between genotype, phenotype and environment using artificial intelligence techniques

ANDSystem can be used to reconstruct the molecular mechanisms of diseases, interpret omix data, and other tasks in the medical and biological research

Selected publications on ANDSystem

- 1. Ivanisenko, T.V., Saik, O.V., Demenkov, P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. **BMC Bioinformatics** 21, 228 (**2020**). IF 3.24, Q1, <u>https://doi.org/10.1186/s12859-020-03557-8</u>.
- 2. Zolotareva O, Saik OV, Königs C, Bragina EY, Goncharova IA, Freidin MB, Dosenko VE, Ivanisenko VA, Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. **Sci Rep. 2019** Nov 8;9(1):16302. IF 3.998, Q1, doi: 10.1038/s41598-019-52762-w.
- 3. Ivanisenko VA, Demenkov PS, Ivanisenko TV, Mishchenko EL, Saik OV. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. **BMC Bioinformatics**. **2019** Feb 5;20(Suppl 1):34. IF 3.24, Q1, doi: 10.1186/s12859-018-2567-6.
- 4. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. **BMC Systems Biology 2015**, 9(Suppl 2):S2. Q1, doi: 10.1186/1752-0509-9-S2-S2
- Andrey S Glotov, Evgeny S Tiys, Elena S Vashukova, Vladimir S Pakin, Pavel S Demenkov, Olga V Saik, Timofey V Ivanisenko, Olga N Arzhanova, Elena V Mozgovaya, Marina S Zainulina, Nikolay A Kolchanov, Vladislav S Baranov, Vladimir A Ivanisenko Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Systems Biology 2015, 9(Suppl 2):S4. Q1, doi: 10.1186/1752-0509-9-S2-S

Thank you for the attention