Application of 2D-QSAR and Chemical Read-Across Algorithm to Predict the Androgen Receptor Binding Affinity

Arkaprava Banerjee, Priyanka De, Kunal Roy Drug Theoretics and Cheminformatics Laboratory, Jadavpur University, Kolkata, INDIA https://sites.google.com/site/kunalroyindia

99

Understanding Chemical-Biological Interactions

0

DTC

Introduction

✓ Endocrine Disruptors (EDCs) promote adverse modification in hormonal regulation

- ✓ They show various neurological, reproductive and cardiovascular adverse effects by interfering with the synthesis, transport, metabolism and release of hormones
- ✓ Among these, certain compounds mimic Androgen, which is responsible for male sexual characters

 \bigcirc

This study models and predict androgen receptor binding affinity using 2D-QSAR and Chemical Read-Across approaches

Schug, T.T., Janesick, A., Blumberg, B., Heindel, J.J., 2011. J. Ster. Biochem. Mol. Bio.. 127, 204-215

Java DTC

Software tools used for 2D-QSAR & Read-Across

✓ DTC-QSAR v1.0.5 available at https://dtclab.webs.com/softwaretools

✓ BestSubsetSelection_v2.1 available at https://dtclab.webs.com/software-tool

✓ PLS_SingleY_1.0 available at https://dtclab.webs.com/softwaretools

✓ Read-Across-v3.1 available at https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home

✓ PRI Tool_PLSversion available at https://dtclab.webs.com/software-tool

Software used for Pharmacophore Modeling, Docking and Molecular Dynamics Simulation

✓ BIOVIA Discovery Studio Client 4.1

✓ **GROMACS 2021.4**

Wav2Drud

Understanding Chemical-Biological Interactions

DTC

Results & Discussion

Partial Least Squares Equation

LogRBA

 $= -3.23 + 0.49 \times SsssCH - 0.41 \times MaxaaCH$ $+ 0.23 \times nCconj + 0.35 \times LogP99 - 0.17$ $\times F10[C - 0] + 0.06 \times minsOH + 0.06 \times N\%$ $+ 0.67 \times F08[O - F]$

 $\begin{array}{lll} R^2 \, (Train) : 0.737 & Q^2 \, (LOO) : 0.680 \\ Q^2 F1 : 0.582 & Q^2 F2 : 0.582 \end{array}$

Read-Across: Q²F1 : 0.635 Q²F2 : 0.635 (Gaussian-Kernel Similarity)

Wold S, Sjöström M, Eriksson L, 2001, Chemom. Intell. Lab. Sys., 58, 109-130.

Chatterjee, M., Banerjee, A., De, P., Gajewicz, A., Roy, K., 2022. Environ. Sci.: Nano. 9, 189-203.

Comparison with previous models

DTC LAB

> PREDICTIVE SERVICES

Hong H et al. 2003. SAR QSAR. Environ. Res. 14, 373-388

- CoMFA
- nTrain=146
- nTest=8
- **R**²=0.902
- Q²=0.571
- Q²_F1=Not reported
- Q²_F2=Not reported

Not robust, Not reproducible

Our Work

- 2D-QSAR
- nTrain=103
- nTest=44
- R²=0.737
- Q²(LOO)=0.680
- Q²_F1=0.582
- Q²_F2=0.582

Robust, Predictive, Reproducible

Waller C. L. et al. 1996. Toxicol. Appl. Pharmacol. 137, 219-227

- CoMFA
- nTrain=21
- nTest=7
- R2=0.989
- Q2=0.792
- Q2_F1=Not reported
- Q2_F2=Not reported

Less robust, Less compounds, Not reproducible

Way2Drug

Understanding Chemical-Biological Interactions

DTC

 \checkmark A regression-based 2D-QSAR Model was developed which is robust, predictive and avoids 3D descriptor computation and conformational complexity

 \checkmark The model generated should be an useful tool to quickly and efficiently predict the quantitative binding affinity of EDCs for the Androgen Receptor

✓ Chemical Read-Across was also tried, and the prediction results obtained were even better.

✓ The 2D-QSAR model was supported by the results of Pharmacophore modeling, Docking and MD Simulation

