Automating the Rational Design of Glycomimetics

Robert J. Woods

Complex Carbohydrate Research Center University of Georgia

GLYCAM-Web: glycam.org

Carbohydrate Recognition in Human Health

Mammalian cells are covered in a complex forest of glycoconjugates (**the glycocalyx**).

Carbohydrate-protein are key for cell-cell and host-pathogen recognition and are therefore potentially important therapeutic targets.

Glycan binding proteins (GBPs)

- Essential to normal cell growth and development
- Used by pathogens (viruses and bacteria) to adhere to host cells
- Transport carbohydrates for catabolism
- Modulate protein folding and secretion

Carbohydrate-processing enzymes

- Synthesize and degrade glycans
- Exploited by hosts and pathogens

Wiesinger A, Peters W, Chappell D, Kentrup D, Reuter S, Pavenstädt H, et al. (2013) Nanomechanics of the Endothelial Glycocalyx in Experimental Sepsis. PLoS ONE 8(11): e80905

Approaches to Inhibiting Carbohydrate Binding

Glycomimetics as a Therapeutic Strategy

- Exploit the specificity of the endogenous carbohydrate ligand
- Employ the native carbohydrate ligand as a basis for rational design
- Examples: Relenza[®] and Tamiflu[®]
- Review: Magnani and Ernst (2009) Discov. Med. 8, 247-252

How to choose the "R" groups?

Cumstey et al. Angew. Chem. Int. Ed. 44, 5110-5112

Inhibiting Protein-Carbohydrate Interactions

Glycomimetic compounds:

- Contain a carbohydrate core plus drug-like modifications
- Enhanced binding affinity
- Enhanced drug-like characteristics (membrane permeability, half life, etc.)

• Our Project:

- Develop a high-throughput virtual screening pipeline for glycomimetic discovery.
- Automate this and create an online tool for glycomimetic screening
- Apply it to Influenza and other disease targets

PDB 6AOY[5] (FmlH + ONPG)

Moiety Grafting and Conformational Sampling

Graft drug-like moieties onto bound carbohydrate and look for optimal orientation

- All rotatable bonds in the chemical moiety are identified and rotated
 - Number of Rotamers = $\prod_{i=1}^{N} \frac{360}{\theta_i}$, 6 bonds, sampled at 10° increments = 2.2 x 10° rotamers!
- A genetic algorithm is employed for conformational sampling

Moiety Grafting Rotamer Sampling

Molecular Dynamics Can Discriminate Strong from Weak

Which inhibitors should we simulate?

Putative Influenza Hemagglutinin Inhibitor 1

Putative Influenza Hemagglutinin Inhibitor 2

Automated Virtual Glycomimetic Screening

Robust and reproducible data sets.

Expandible in response to user demand/scientific developments.

Standardized simulation conditions, otherwise highly prone to user error.

Eliminates complex software installation and training.

Accessibility to non-experts in computational chemistry.

Enhanced user access to sophisticated modeling tools.

Motivation: Translate modeling technology into the experimental laboratory

Virtual Glycomimetic Screening

Virtual Glycomimetic Screening

Virtual Glycomimetic Screening

CH-π Interactions in Carbohydrate Binding

AutoDock Vina for Carbohydrates (Vina-Carb): Nivedha, et al. (2016) *J. Chem. Theory Comput.*, *12*, 892-901. AutoDock Vina with CH-π: Xiao, Y., & Woods, R. J. (2023) *J. Chem. Theory Comput.*, *19*(16), 5503-5515.

Case Studies

Carbohydrate Binding Protein	Endogenous Ligand	Function	Number of Reported Mimetics	Number of co-crystal structures
DC-SIGN	High-mannose N- glycans	Pathogen Recognition	13	1
Galectin-1	Beta-galactosides	Cell-cell / matrix interactions	11	0
Galectin-3	Beta-galactosides	Cell adhesion, growth, apoptosis, etc	12	3
FimH	Terminal mannoses	E.coli adhesin, urinary tract infection	7	8
FmlH	Gal/GalNAc	<i>E.coli</i> adhesin, UTI	9	7
Siglec-2	Neu5Ac/Gcα2-6Gal	B cell activation	42	0
Siglec-4	Sialylated gangliosides	Axon regeneration	25	0
Siglec-7	Neu5Acα2-8Neu5Ac	Natural killer cell inhibition	22	1
Siglec-8	6'-sulfo-sLe ^x /LacNAc	Mast cell/eosinophil apoptosis	11	1
LecA	Glycosphingolipid Gb3	Pseudomonas host cell invasion	28	8
LecB	Fucose glycoconjugates	Biofilm formation	22	7
Cholera Toxin	GM1 gangliosides	Host cell invasion	11	7

Success Example: DC-SIGN

A lectin involved in immunity. Exploited for infection by HIV and COVID.

Statistical Correlation to Experimental Affinity

Vina-Carb with CH- π significantly outperformed MM-GBSA in this system

Vina-Carb: $R^2 = 0.52$ MM-GBSA: $R^2 = 0.07$

Success Example: FimH/FmIH

FimH (*E. coli*) binds to Gal epitopes on human epithelial cells, causing urinary tract infections

FimH & FmIH: Computed versus Experimental Affinity

Problem Example: Galectin-3

Requirement for induced fit in ARG 144 causes prediction error.

Problem Example: Galectin-3

Morphing of ARG 144 from natural carbohydrate (1KJL.pdb) to glycomimetic ligand (5E88.pdb)

Solution: employ screening with a rotamer library of the nearest amino acid residues

Problem Example: Galectin-3

The Problem of Induced Fit in the Backbone: Siglec-8

Lenza, et al. J. Am. Chem. Soc., Au. (2022) 3:204-215

Apo Protein: 7qu6.pdb

Co-Crystal with Glycomimetic: 7qui.pdb

Screening Protocol:

Rigid Protein

- Typical
 Flexible Protein
 - Side chains: Employ a rotamer library, Backbone: changes in protein fold are highly problematic for docking

Protein	Number of Mimetics	Number of crystal structures with mimetics	R ² after MD (Vina-Carb/pi)	R ² after MD (MM-GBSA)
DC-SIGN	13	1	0.52	0.07
Galectin-1	11	0	0.01	0.01
Galectin-3	12	3	0.01	0.01
FimH	7	8	0.55	0.72
FmlH	9	7	0.55	0.72
Siglec-2	42	0	0.15	0.14
Siglec-4	25	0	0.15	0.16
Siglec-7	22	1	0.35	0.38
Siglec-8	11	1	0.57	0.61
LecA	28	8	slope < 0	slope < 0
LecB	22	7	0.05	0.02
Cholera Toxin	11	7	0.15	0.28

Protein	Number of Mimetics	Number of crystal structures with mimetics	R ² after MD (Vina-Carb/pi)	R ² after MD (MM-GBSA)	
DC-SIGN	13	1	0.52	0.07	
Galectin-1	11	0	0.01	0.01	d fit
Galectin-3	12	3	0.01	0.01	
FimH	7	8	0.55	0.72	
FmlH	9	7	0.55	0.72	
Siglec-2	42	0	0.15	0.14	
Siglec-4	25	0	0.15	0.16	
Siglec-7	22	1	0.35	0.38	
Siglec-8	11	1	0.57	0.61	
LecA	28	8	slope < 0	slope < 0	
LecB	22	7	0.05	0.02	
Cholera Toxin	11	7	0.15	0.28	

Protein	Number of Mimetics	Number of crystal structures with mimetics	R ² after MD (Vina-Carb/pi)	R ² after MD (MM-GBSA)	
DC-SIGN	13	1	0.52	0.07	
Galectin-1	11	0	0.01	0.01	
Galectin-3	12	3	0.01	0.01	
FimH	7	8	0.55	0.72	
FmlH	9	7	0.55	0.72	
Siglec-2	42	0	0.15	0.14	
Siglec-4	25	0	0.15	0.16	
Siglec-7	22	1	0.35	0.38	
Siglec-8	11	1	0.57	0.61	
LecA	28	8	slope < 0	slope < 0	
LecB	22	7	0.05	0.02	
Cholera Toxin	11	7	0.15	0.28	

Protein	Number of Mimetics	Number of crystal structures with mimetics	R ² after MD (Vina-Carb/pi)	R ² after MD (MM-GBSA)
DC-SIGN	13	1	0.52	0.07
Galectin-1	11	0	0.01	0.01
Galectin-3	12	3	0.01	0.01
FimH	7	8	0.55	0.72
FmlH	9	7	0.55	0.72
Siglec-2	42	0	0.15	0.14
Siglec-4	25	0	0.15	0.16
Siglec-7	22	1	0.35	0.38
Siglec-8	11	1	0.57	0.61
LecA	28	8	slope < 0	slope < 0
LecB	22	7	0.05	0.02
Cholera Toxin	11	7	0.15	0.28

Automated Virtual Glycomimetic Screening

- Enables the rapid, objective, standardized screening of relevant moieties
- Facilitates testing many scoring protocols (Vina-Carb, MM-GBSA)
- Enables the discovery of systemic problems
 - Galectins missing force field terms (cation-π), induced side chain fit
 - Siglec-8 induced fit in backbone
 - LecA/B induced side chain fit
- **Benefits** from as much x-ray data and binding data as possible

Caveat 1 – the pdb is riddled with low quality structures for glycans

Agirre et al., (2015) Nat. Chem. Biol. 5, 303

Caveat 2 – binding assays can give very different (1000x) K_D values

Ji Y, Woods RJ. (2018). Adv Exp Med Biol. 1104, 259

Conclusions

Glycomimetic design is amenable to automation!

Expect to see it at <u>glycam.org</u> in 2025

Predicted binding energies can (and need to) be improved

Introduction of new physics in scoring functions

- **CH**-π, cation-π
- > Need to introduce new physics into AMBER force field for MD

Predicted binding poses can (and need to) be improved

Induced fit in receptor, conserved waters

Need beta test users

rwoods@ccrc.uga.edu

Acknowledgments

Underlying Science	Modeling Tool Development
Yao Xiao	Lachele Foley
Alex Lee	Dan Wentworth
Oliver C. Grant	Dave Montgomery
Lachele Foley	Oliver C. Grant

GLYCAM-Web: glycam.org

National Institute of General Medical Sciences

28