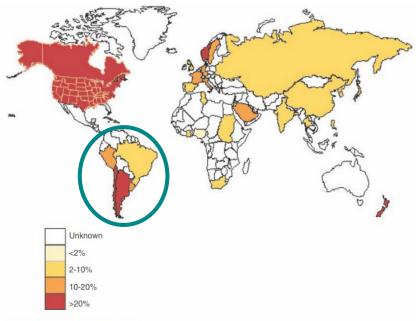
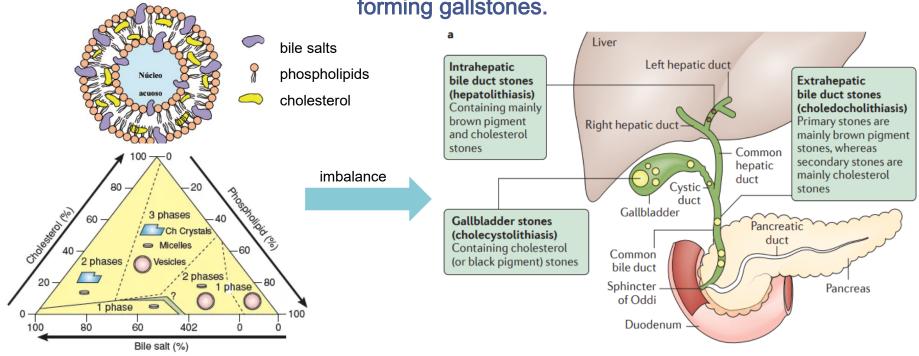


Latin american phytochemical derivatives as promising candidates for gallstone disease therapy: insights from Molecular Screening, Molecular Docking, Density Functional Theory, and Molecular Dynamics studies

Bsc. Jaime Tamayo, Alessandra Latorre, Dania, Victor Garcia

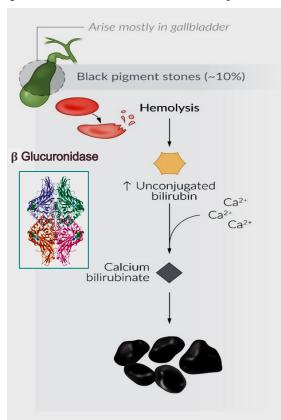
Around 15% of latin american adult population suffers from biliary lithiasis.

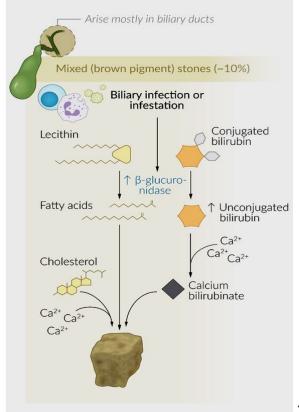



Fig. 3.1 Prevalence of gallstone disease

		Prevalence	(%)		Number of		
Continent	Population	Overall Female		Male	participants (n)	Study	
South Americ	ra						
	Mapuche Indians		49.4	12.6		Covarrubias 1984 ^a [18]	
	Argentina	21.9	25.0	18.2	1875	Palermo 2013 [19]	
	Peru	14.3	16.0	10.7	1534	Moro 2000 [20]	
	Chile	28.0	37.4	14.5	1699	Covarrubias 1995 [21]	
	Uruguay	10.4	_	_	693	Cohen 1992 [22]	

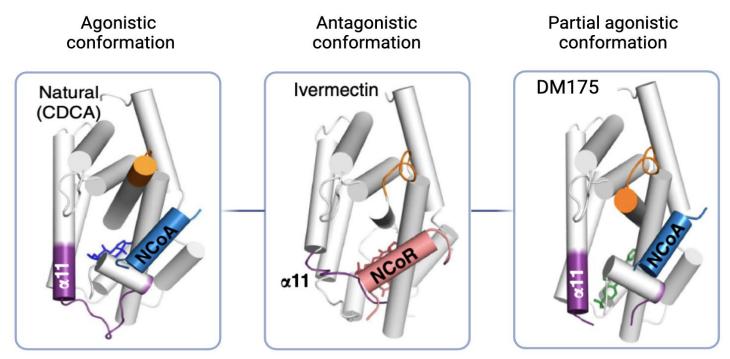
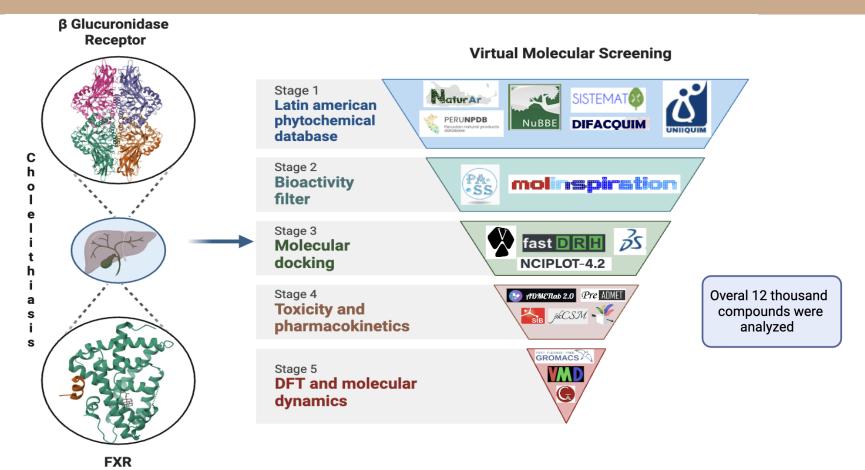
PURPOSE

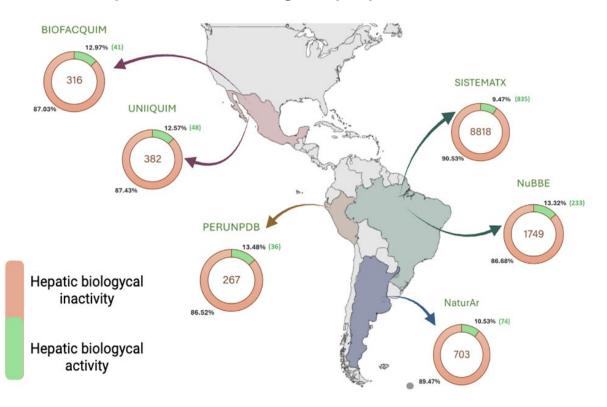

In Latin american, ancestral knowledge about the natural treatment of diseases involves the use of medicinal plants. However, studies are needed to identify the phytochemicals present in these plants capable of interacting with the agents related to gallstone formation.

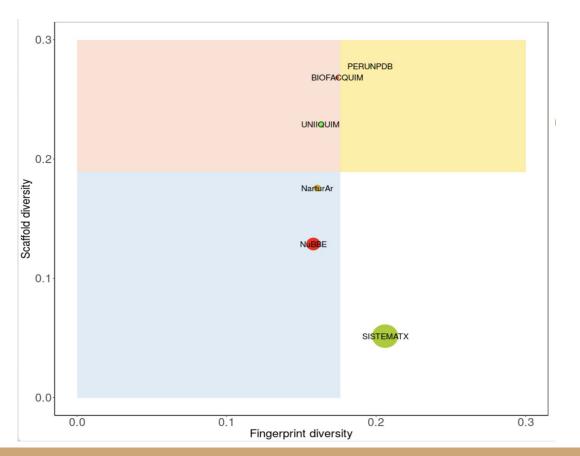

Bile crystallizes when there is an imbalance in the amount of its components, forming gallstones.

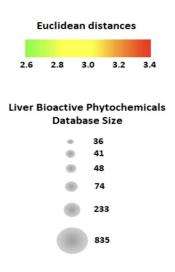
FXR receptor modulates yellow stones and β Glucuronidase black stones

Conformations of FXR receptor

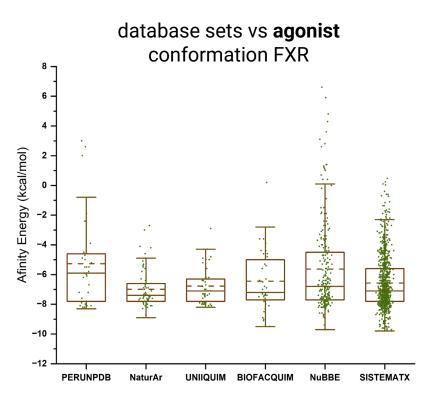



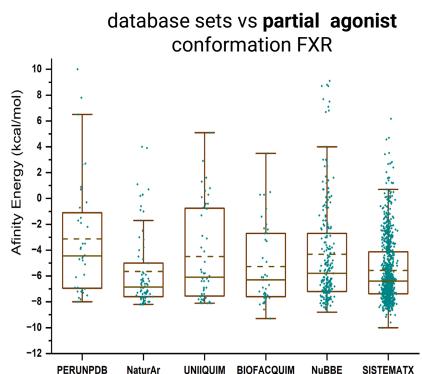

Image taken from: Merk, D., 2019, fig 3. https://doi.org/10.1038/s41467 -019-10853-2

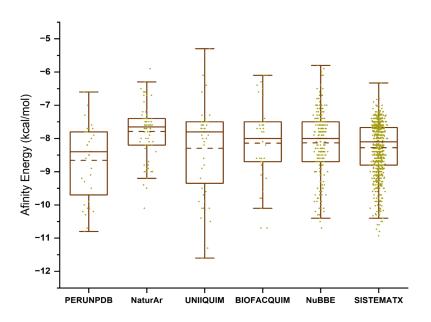

Receptor


From 9% to 14% of compounds had Hepatic active biological properties

Way2drug	Molinspiration
Beta glucoronidase inhibitor Hepatic disorder treatment Hepatoprotectant	Nuclear Receptor Ligand
Activity > 0.5 Activity > inactivity	Score > - 0.5




Diversity of compounds with hepato -active biological response


Energetic distribution of compounds per dataset for the FXR receptor

Energetic distribution of compounds per dataset for the FXR receptor

database sets vs **antagonist** conformation FXR

Top 10 potential phytochemical agonists

	Phytochemical	FXR in agonistic conformation	FXR in partial agonistic conformation	FXR in antagonistic conformation	B-glucuronidase	FXR agonistic conformation and B-glucuronidase
		Mean AE (kcal/mol)	Mean AE (kcal/mol)	Mean AE (kcal/mol)	Mean AE (kcal/mol)	Sum of AE (kcal/mol)
	CDCA	-11.5	-6.9	-8.3	-7.5	-19.0
1	NuBBE_1313	-8.6	-8.1	-8.2	-9.5	-18.1
2	SISTEMATX_15470	-9.6	-9	-8.7	-8.2	-17.8
3	SISTEMATX_549	-8.9	-6.9	-8.1	-8.6	-17.5
4	SISTEMATX_16776	-9.8	-7.3	-7.8	-7.6	-17.4
5	FQNP354	-9.5	-6.9	-7.9	-7.9	-17.4
6	SISTEMATX_13206	-9.6	-7.7	-8.8	-7.7	-17.3
7	SISTEMATX_14687	-9.3	-5.5	-8.6	-7.9	-17.2
8	FQNP108	-8.9	-8.1	-8.5	-8.3	-17.2
9	SISTEMATX_17444	-9.0	-2.1	-8.7	-8.2	-17.2
10	SISTEMATX_14474	-8.7	-4.5	-8.1	-8.5	-17.2

Top 10 potential phytochemical as partial agonists

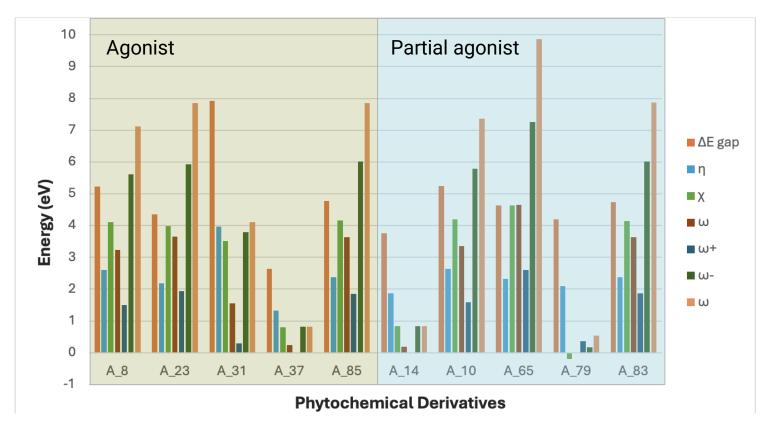
	Phytochemical	FXR in agonistic conformation	FXR in partial agonistic conformation	FXR in antagonistic conformation	B-glucuronidase	FXR agonistic conformation and B-glucuronidase
		Mean AE (kcal/mol)	Mean AE (kcal/mol)	Mean AE (kcal/mol)	Mean AE (kcal/mol)	Sum of AE (kcal/mol)
	DM175	-8.7	-8.9	-8.5	-8.1	-17.0
1	SISTEMATX_14736	-9.3	-9.6	-9.1	-9	-18.6
2	SISTEMATX_15108	-6.2	-8.5	-8.3	-9.5	-18.0
3	SISTEMATX_15178	-6.4	-8.6	-8.5	-8.9	-17.5
4	SISTEMATX_19255	-9	-10	-8.3	-7.4	-17.4
5	SISTEMATX_15370	-7.8	-8.4	-7.7	-8.7	-17.1
6	SISTEMATX_14651	-8.6	-9	-8.1	-7.9	-16.9
7	NuBBE_1305	-8.7	-8.8	-8.2	-8.1	-16.9
8	NuBBE_2395	-8.6	-8.6	-8.4	-8.2	-16.9
9	NuBBE_1323	-8.4	-8.6	-8.4	-8.2	-16.8
10	SISTEMATX_16701	-8.6	-9.2	-7.8	-7.4	-16.6

Top 10 potential phytochemical derivatives as agonists/partial agonists

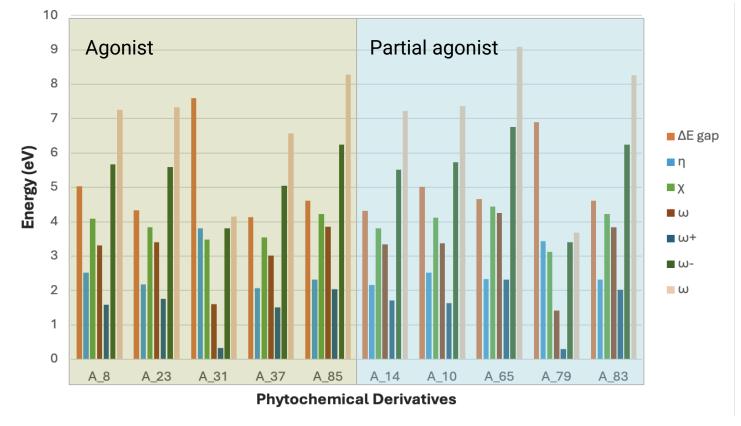
Class	Derivative ID	agonistic agonistic antagonistic		FXR in antagonistic conformation	B-glucuronidase	FXR agonistic conformation and B-glucuronidase
					Mean AE (kcal/mol)	Sum of AE (kcal/mol)
	CDCA	-11.5	-6.9	-8.3	-7.5	-19.0
	A_23	-9.80	-8.43	-8.70	-8.98	-18.8
Potential	A_31	-10.00	-7.70	-7.90	-8.53	-18.5
FXR agonist	A_37	-9.33	-8.10	-8.70	-8.71	-18.0
	A_8	-9.20	-7.20	-8.20	-8.20	-17.4
	A_85	-9.03	-7.23	-8.50	-8.26	-17.3
	DM175	-8.7	-8.9	-8.5	-8.1	-17.0
Potential	A_79	-8.70	-10.20	-8.30	-9.07	-19.3
FXR partial	A_14	-8.60	-10.00	-8.50	-9.03	-19.0
agonist	A_65	-9.03	-9.43	-8.80	-9.09	-18.5
6228	A_83	-8.20	-9.40	-8.73	-8.78	-18.2
	A_10	-8.80	-9.10	-8.70	-8.87	-18.0

Ligand efficiency table of the phytochemical derivatives as potential agonists/partial agonists

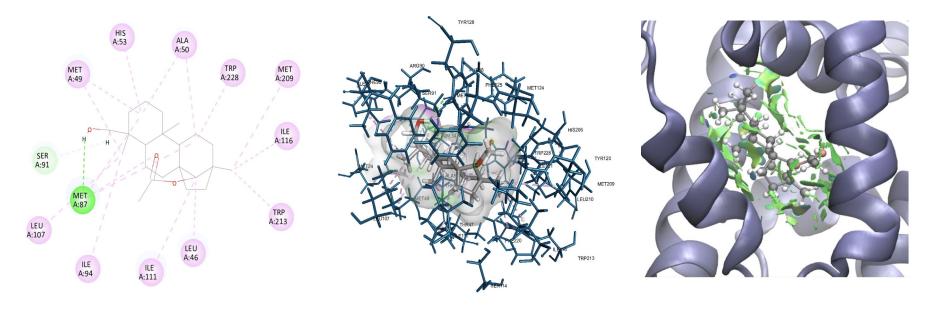
		Ebind		LE	BEI		MM/PB(GB)S	A (kcal/mol)
Derivative ID	Name_File	(kcal/mol)	Kd	(kcal/mol)	(kDa)	LLE	PB4	GB8
	A_31	-10.0	4.69E-08	0.40	21.03	2.62	-52.16	-52.6
B	A_23	-9.8	6.57E-08	0.35	18.54	3.90	-46.64	-50.5
Potential FXR agonist	A_37	-9.5	1.09E-07	0.34	18.21	4.44	-37.97	-43.15
	A_8	-9.2	1.81E-07	0.38	20.47	3.61	-39.24	-42.49
	A_85	-9	2.54E-07	0.32	17.20	3.34	-43.85	-48.44
	A_79	-10.2	3.35E-08	0.39	20.62	2.81	-47.94	-49.78
Potential FXR partial agonist	A_14 A_65	-10.0 -9.4	4.69E-08 1.29E-07	0.43	23.39	5.33 4.76	-36.27 -39.71	-39.66 -43.72
partial agonist	A_83	-9.4	1.29E-07	0.35	18.65	3.50	-51.42	-43.72
	A_10	-9.1	2.14E-07	0.40	21.15	3.48	-42.41	-44.34


Pharmacokinetics of Top 10 derivatives

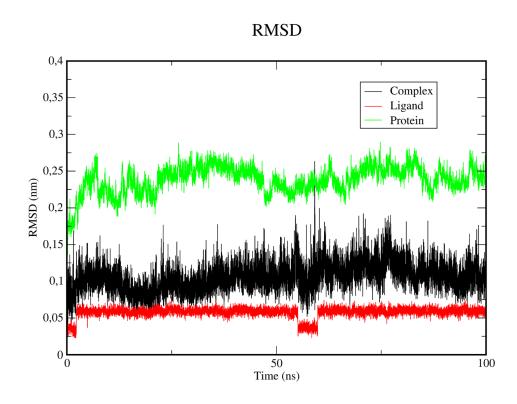
			Absorption	1		Distributio	n		ı		Excretion			
Class	Derivative ID	HI (%)	Pgp Inhibitor	Caco-2 (nm/sec)	%PPB	BBB (C.brain/ C.blood)	VD (L/Kg)	CYP1A2 inhibitor	CYP2C19 inhibitor	CYP2C9 inhibitor	CYP2D6 inhibitor	CYP3A4 inhibitor	CL (mL/min/K g)	T1/2 (min)
	A_8	98.48	Non	22.06	88.02	0.26	1.742	No	No	No	No	No	3.91	308.83
Potential	A_23	95.49	Non	22.14	57.36	0.01	1.449	No	No	No	No	No	2.53	397.06
FXR	A_31	95.33	Yes	24.48	97.00	2.51	0.938	No	No	Yes	No	No	3.90	166.63
agonist	A_37	84.69	Non	20.54	76.76	0.02	0.629	No	No	No	No	No	0.97	450.31
	A_85	96.71	Non	19.10	64.41	0.01	1.548	No	No	No	No	No	2.31	464.20
	A_10	94.77	Non	12.84	46.16	0.01	1.358	No	No	No	No	No	2.08	452.67
Potential	A_14	89.94	Non	0.57	74.10	0.01	0.532	No	No	No	No	No	1.17	314.30
FXR partial	A_65	92.07	Non	14.36	88.74	0.11	0.419	Yes	No	No	No	No	8.74	33.21
agonist	A_79	98.00	Yes	21.61	95.94	0.07	0.521	No	No	Yes	No	No	1.21	297.90
	A_83	96.24	Non	21.38	59.82	0.02	1.396	No	No	No	No	No	2.13	454.40


Toxicity of Top 10 derivatives

Class	Derivative ID	Mutagenic	Tumorigenic	Reproductive Effective	Irritant	hERG I inhibitor	hERG II inhibitor	Skin Sensitisation	Max. tolerated dose (log(mg/Kg/day))	T.Pyriformis toxicity (log µg/L)	Minnow toxicity (Log LC50)
	A_8	none	none	none	none	No	No	No	0.229	0.285	1.753
Potential	A_23	none	none	none	none	No	No	No	0.51	0.285	1.738
FXR	A_31	none	none	none	none	No	No	No	-0.659	0.655	-0.451
agonist	A_37	none	none	none	none	No	No	No	0.64	0.285	1.497
	A_85	none	none	none	none	No	No	No	0.21	0.285	1.045
	A_10	none	none	none	none	No	No	No	-0.409	0.392	0.846
Potential	A_14	none	none	none	none	No	Yes	No	0.509	0.286	2.004
FXR partial	A_65	none	none	none	none	No	No	No	0.948	0.285	-1.251
agonist	A_79	none	none	none	none	No	No	No	0.429	0.285	0.13
	A_83	none	none	none	none	No	No	No	1.125	0.285	0.995


Reactivity index for the best derivatives in vacuum

Reactivity index for the best derivatives in water


2D, 3D interactions and NCI of the potential agonist A_31

RMSD of the molecular dynamics of the potential agonist

A_31

Summary

From all compounds, only 10% (1200) presentes favourable biological hepatic
according to way2drug and molinspiration

- □ PERUNPDB presents the highest diversity, although it was the smallest database
- ☐ the SISTEMTIX database contains phytochemicals with an overall low affinity energy
- □ top 10 potential natural products and top 5 derivatives come from SISTEMATX, NuBBE and BIOFACQUIM
- ☐ The compounds analyzed are stable in vacuum and water
- □ Non polar interactions are more abundant in agonist.
- ☐ The complex analyzed showed better stability than the ligand at 100 ns

Acknowledgements

XXX Symposium on Bioinformatics and Computer-Aided Drug Discovery

Jaime Tamayo Ramos jaime.tamayo@unmsm.edu.pe