Combating Cystic Fibrosis: Computational Studies on CFTR

Hanoch Senderowitz

Department of Chemistry, Bar-Ilan University, Israel

XXV Symposium on Bioinformatics and Computer-Aided Drug Discovery September 16, 2024

The Cystic Fibrosis Disease

- Most common lethal, inherited disease among people of European descent
- The number of CF patients is estimated at 60,000-165,000 across 94 countries

CF results in pathologies in multiple organs but primarily in the lungs

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.

CF is caused by mutations to the CFTR protein

Median survival age of CF patients

CFTR is an ATP Binding Cassette (ABC) Transporter

- One of the largest and most ancient protein families
 - * Membrane proteins
 - * Found in prokaryotes and eukaryotes (48 ABC transporters in humans)
 - Harness the power of ATP hydrolysis to mediate substance transport across cell membranes

CFTR is Unique!

CFTR is the only known ion channel in the ABC family

- Historic perspective
 - * Gene cloning: 1989 (35 years ago)
 - * First low-resolution structure: 2004
 - * First published homology model: 2008
 - * First cryo-EM structure: 2016
 - * First crystal structure: ????

Gating Cycle of CFTR

- CFTR likely has multiple states
- Different states may be clinically relevant

Cant et al. Int J Biochem Cell Biol. 2014;52:15–25

CFTR Mutations

- >2000 CFTR mutations (CF-causing: 719; Non CF-causing: 25)
- All mutations compromise the ability of CFTR to conduct Cl⁻ ions

Gelfond and Borowitz CLINICAL GASTROENTEROLOGY AND HEPATOLOGY 2013;11:333–342

How Do Mutations in CFTR Cause CF?

Treatment Hypothesis

Restoring Cl⁻ conductance to "normal" levels will ameliorate CF pathologies

Current ~ [# channels] * [open probability]

- <u>CFTR corrector</u>: Corrects folding defect and increases number of CFTR channels at cell membrane
- <u>CFTR potentiator</u>: Increases open probability of CFTR channels at the membrane
- **<u>Combo therapy</u>**: Does both

Treatment Hypothesis

Available CFTR Modulators

Therapy	Luma	Elexa	Teza	Iva	Indication
TriKafta					F508del or 177 specific mutations
Symdeko					F508del/F508del + 154 specific mutations
Orkambi					F508del/F508del
Kalydeco					97 specific mutations

~90% of CF patients are treatable; ~10% are not

Structural Information on NBD1

NBD1 is considered a hot-spot for CF causing mutations

2004: 6 structures, Resolution: 2.2-3.0Å

Today: 36 structures, Resolution: 1.7-3.1Å

CFTR Models

Adapted from: Rahman et al. PLoS One. 2013;8(9):e74574, Corradi et al. J Biol Chem. 2015;290(38):22891–906, Mornon et al. Cell Mol Life Sci. 2015;72:1377–1403

Structural Information on CFTR

20 cryo-EM structures (resolution 2.7-6.9Å) from different species, and representing different conformational states

The Structure of the CFTR Pore

Most structures are excellent starting points for MD simulations

Molecular Dynamic Simulations

• Force field

$$V(r^{N}) = \sum_{bonds} \frac{k_{i}}{2} (l_{i} - l_{i,0})^{2} + \sum_{angles} \frac{k_{i}}{2} (\theta_{i} - \theta_{i,0})^{2} + \sum_{torsions} \frac{V_{n}}{2} (1 + \cos(n\omega - \gamma)) + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \left(4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}} \right] + \text{cross terms}$$

• Molecular Dynamics

$$v(t) = \frac{dr(t)}{dt}$$
$$F = m \cdot a(t) = m \cdot \frac{dv(t)}{dt}$$

$$\mathbf{r}(t+\delta t) = \mathbf{r}(t) + \delta t \mathbf{v}(t) + \frac{1}{2} \delta t^2 \frac{1}{m} \mathbf{F}(t)$$
$$\mathbf{v}(t+\delta t) = \mathbf{v}(t) + \frac{1}{2} \delta t \frac{1}{m} [\mathbf{F}(t) + \mathbf{F}(t+\delta t)]$$

Replica Exchange MD

Analyzing MD Simulations

Detailed Structure of NBD1

The Dynamics of WT and F508del NBD1

NBD1 in Complex with BIA

Zhenin et al., JCIM **2015**, 55, 2349-2364

Correlating RMSF Profiles with Thermal Stability

RMSF profiles are indicative of thermal instability in NBD1 constructs of hCFTR

Predicting Thermal Stability with FoldX

- Stabilizing mutations benefit from better H-bonds
- Destabilizing mutations suffer from steric clashes

MD Simulations at Elevated Temperatures

- WT
- G551D (LSGGQ, +0.22°C): CF-causing
- A559T (ABCα, -10.70°C): CF-causing
- L467P (F1 ATP binding core,-19.30°C): CF-causing
- 6SS (+17.50°C): Stabilizing
- 2PT/M470V (+9.30°C): Stabilizing

Correlate computational predictions with experimental observations Mechanistic insights

Lublin et al., manuscript in preparation

RMSD and **RMSF**

DSSP

A559T-NBD1

6SS-NBD1

WT-NBD1

2PT/M470V-NBD1

L467P-NBD1

G551D-NBD1

Fraction of Native Contacts

Computational metrics are in agreement with experiment (except G551D)

Mechanistic Insights I

Highly destabilized regions in L467P-NBD1 and A559T-NBD1

Mechanistic Insights II: First Points of Disintegration

L467P-NBD1

A559T-NBD1

Computational Studies on full-length CFTR

20 cryo-EM structures (resolution 2.7-6.9Å) from different species, and representing different conformational states

Most structures are excellent starting points for MD simulations

The Q359K / T360K mutation

- Described in Jewish CF patients of Georgian decent
- Results in severe CF phenotype albeit with residual early CFTR function
- No predicted de-stabilization effects
- Pore hindrance
- "electrostatic trap" (?)

Mei-Zahav et al., J Cyst Fibros. 2018 pii: S1569-1993(18)30641-6

MD Simulations of WT-CFTR

P67L-CFTR

- Rare yet severe mutation
- Molecular consequences poorly characterized
- Correctable by Lumacaftor
- Potentiated by Ivacaftor
- What does it do?

Lasso Motif

Sabusap et al., J. Biol. Chem., 2021, 296, 100598

P67L-CFTR and P67L/R555K-CFTR

Alostericity

- WT CFTR: Stable H-bond between Y275 (MSD1) and C1355 (NBD2)
- P67L: No such stabilizing interactions

Time (ns)

P67L-CFTR: Also a Gating Mutation (?)

Sabusap et al., J. Biol. Chem., 2021, 296, 100598

Conclusions

- CFTR structures are useful
 - Interpretation of data
 - Hypothesis generators
 - Drug design
- More Structures are needed
- Simulations provide insight into the dynamics of WT and mutant CFTR
- For specific mutations, simulations suggest atomic level insights into potential mechanisms of action

Acknowledgements

Michael Zhenin Efrat Noy Ava Xue Netaly Khazanov Luba Simchaev Jacob Spiegel Lior Lublin Malkeet Singh

All Members of the CFTR Consortium Many Many members of the CF Community

United States – Israel

United States – Israel Binational Science Foundation