PITFALLS OF SARS-COV2 MAIN PROTEASE COVALENT INHIBITION MODELING WITH THE COMBINED QUANTUM AND MOLECULAR MECHANICS APPROACHES

Igor Polyakov^{1,2}, Maria Khrenova^{1,2}

¹Lomonosov Moscow State University, Moscow, Russia ²Emanuel Institute of Biochemical Physics RAS, Moscow, Russia

SARS-CoV-2 M^{pro} (3CL^{pro}) – cysteine hydrolase

- Hundreds of PDB structures with different ligands
- 306 residues, 34.21 kD monomer
- Catalytic dyad Cys145+His41.
- Cuts the polypeptide chain to produce the nsp4-16 proteins

Phe140, Gly143, Ser144, S1 Cys145, His163, Glu166, Glutamine, lactam His172
S2 Thr25, His41, Cys145 Leu, Phe, Met, Val
S3 His41, Met49, Met165 None
S4 Met165, Glu166 Hydrophobic aa
S5 Glu166, Met165, Gln189 Hydrophilic aa

Molecule as a stable system of nuclei and electrons

$$\hat{H}\Psi = E_{QM}\Psi, \quad \Psi = \Psi(r_i, R_j, t)$$
$$\hat{H} = \sum_i \left(-\frac{1}{2}\Delta_{r_i}\right) + \sum_w \left(-\frac{1}{2M_w}\Delta_{R_w}\right) + \sum_{i < j} \frac{1}{r_{ij}} + \sum_{w < v} \frac{Z_w Z_v}{R_{wv}} - \sum_{iw} \frac{Z_w}{|R_w - r_i|}$$

Molecule as springs and charged balls

Bond deformation

Valence angles deformation

Torsion rotations

Electrostatic interaction

Van-der-Waals interactions

Full energy of the system: E(QM/MM) = E(QM) + E(MM) + E(QM/MM)

Stationary points on the potential energy surface (PES)

How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur

Goran Giudetti, Igor Polyakov, Bella L. Grigorenko, Shirin Faraji, Alexander V. Nemukhin, and Anna I. Krylov*

Stationary points located with different optimization algorithms!

- Minimum located by:
- NWChem or <mark>Q-Chem</mark>

There is no one way to do the QM/MM..

...but there are more or less efficient ones!

- TURBOMOLE+ChemShell PES QM/MM
- TeraChem+NAMD FES (QM/MM MD) with CUDA GPU

Used server+consumer grade hardware are available, inexpensive and powerful

Chem. Commun., 2021, 57, 9096

Free energy surfaces

7BUY starting structure TeraChem/NAMD PBE0-D3/6-31G**/CHARMM36 T=300K P=1atm step=1fs Umbrella sampling -> UI/WHAM 15ps per window!

5

Ω

-10

+R-PES

Gibbs energy, kcal/mol

2

+INT-PES

Computed structure of PROD vs 7VH8 crystal structure

RMSD=1.0 Å for 2026 heavy atoms of protein (PyMol super procedure)

IP structures from the R-PES and INT-PES

Thank you for your attention!

This work was supported by the RSF project # 19-73-20032

Calculations were carried out with the resources of supercomputer facilities at Lomonos ov MSU

Umbrella integration/WHAM

$$P_i^u(\xi) = \frac{\int \exp[-\beta E(r)] \delta[\xi^r(r) - \xi] d^{N_r}}{\int exp[-\beta E(r)] d^{N_r}}$$
$$P_i^u(\xi) = P_i^b(\xi) exp[\beta \omega_i(\xi)] exp[-\beta \omega_i(\xi)]$$
$$E_{unbias} = -\left(\frac{1}{\beta}\right) \ln P_i^b(\xi) - \omega_i(\xi) + F_i$$

J. Chem. Phys. 123, 144104 (2005) doi:**10.1063/1.2052648**

FIG. 5. Comparison between umbrella integration (UI) and WHAM for the example of PHBH. $A(\xi)$ around the transition state is shown using 3000 bins.