XXX Symposium on Bioinformatics and Computer-Aided Drug Discovery

16 – 18 September, 2024 | VIRTUAL

Modelling lethality and teratogenicity of zebrafish (*Danio rerio*) due to β -lactam antibiotics employing the QSTR approach

Presented by

Aniket Nath

Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India

aniketnath97@gmail.com

https://scholar.google.com/citations?user=brQXNwUAAAAJ&hl=en

Monday, 16th September, 2024

Nath, A., Ojha, P.K. and Roy, K., 2024. Modelling lethality and teratogenicity of zebrafish (*Danio rerio*) due to β-lactam antibiotics employing the QSTR approach. SAR and QSAR in Environmental Research, pp.1-25. <u>https://doi.org/10.1080/1062936X.2024.2378797</u>

Introduction

β-lactam antibiotics are one of the most effective and consumed medications worldwide

Advantages of zebrafish (Danio rerio) embryos: high fertility and reproduction rate, their transparent property and their phenotypic properties can be easily identified, genetic resemblance with human, more susceptible to drugs and pollutants than the mature fish \rightarrow OECD 236 guidelines

> International organizations propose some new regulations: ECHA, US TSCA, CEPA etc.

A recent study by Browne et al. in 2021 showed that antibiotic consumption was 14.3DDD (Defined Daily Dose)/1000 patients/day in **2018** (40.2 billion DDD), an increase of **46%** from 9.8 DDD/1000 patients/day **in 2000**.

The residual fractions of β -lactams and their metabolites in ecosystems exhibit numerous hazardous effects

Ecotoxicity data of β -lactams are quite limited, and hence it's a subject of QSTR study.

Require lots of resources and time, and are also reliant on an enormous quantity of test animals

QSTR

Environ. Saf. 229 (2022), pp. 113106. doi:10.1016/j.ecoenv.2021.113106

Results and discussions Models' results

	Model endpoint	Model Eq.	No. of	N-Train : N-test			Internal metrics			External metrics			
single endpoint models			Desc.			R ²	Q ² _{LOO}	MAE Train	RMSE _c	Q ² _{F1}	Q_{F2}^2	MAE _{Test}	RMSE _P
	Lethal conc. (pLC_50)	pLC_50 (molar) = 0.24751 - 1.23436*nThiophenes + 1.37757*minaasC + 0.45837*B09[O-O] + 0.82527*minssS	4	24, 6 Total = 30	3	0.75	0.616	0.147	0.218	0.684	0.684	0.183	0.212
	Teratogenic conc. (pTC_50)	pTC_50 (molar) = 2.23315 - 9.71107*Eta_sh_x + 1.27553*(C- 043) - 0.04204*SsNH2 + 0.52521*minaasC	4	34, 6 Total = 40	2	0.631	0.54	0.285	0.351	0.607	0.581	0.22	0.301
inter-endpoint models	pLC_50 = <i>f</i> (pTC_50)	pLC_50 = 0.60336 - 0.34386*(C-019) - 0.76698*(H-049) - 0.19548*(O-057) + 0.81293*pTC_50	3, 1	21, 6 Total = 27	3	0.84	0.703	0.145	0.176	0.76	0.745	0.149	0.167
	pTC_50 = <i>f</i> (pLC_50)	pTC_50 = -0.54584 + 0.44531*(C-019) + 0.66524*MaxaasC + 0.45035*B06[C-S] + 0.91521* pLC_50	3, 1	22, 5 Total = 27	3	0.768	0.606	0.182	0.259	0.678	0.639	0.194	0.211

Results and discussions: Important structural features

Results and discussions: Important structural features

Formal bond order of C with N is 2.

Results and discussions Scatter Plots

It shows how well the predicted values (along the Y-axis) and the observed values (along the X-axis) are correlated, indicating the goodness-of-fit of the model.

Observed and Predicted pLC₅₀ and pTC₅₀ values are in Molar (M) scale.

External set prediction

Total number of external β -lactam compounds ($N_{External}$) = 89

76 – 89 %

Good predictions

Roy, K., Ambure, P. and Kar, S., 2018. How precise are our quantitative structure–activity relationship derived predictions for new query chemicals?. ACS omega, 3(9), pp.11392-11406.

Conclusion

- The QSTR models developed employing two toxicity endpoints, namely median lethal (LC₅₀) and median teratogenic concentration (TC₅₀) against zebrafish (*Danio rerio*) for a set of 30 and 40 β-lactam compounds respectively.
 - The LC₅₀ and TC₅₀ are **proportionally correlated** to each other.
 - Developed models demonstrate statistical validity, resilience, and strong predictive performance.
 - The vital structural attributes of β-lactams responsible for influencing toxicity. The structural attributes that enhance the toxicity of β- lactams may be removed, and those that reduce the toxicity may be included in the final structure while designing a new molecule.
 - If predictions point out harmful effects, their use and emission should be restricted to our surrounding aquatic environment.
- Ultimately help to achieve the ideas behind green chemistry and the **3Rs** (*Refinement, Replacement, and Reduction*) by minimization of testing of animals.

