

Expanding and exploring the chemical space of food chemicals and natural products

José L. Medina-Franco

DIFACQUIM research group School of Chemistry National Autonomous University of Mexico (UNAM)

XXX Symposium on Bioinformatics and Computer-Aided Drug Discovery (BCADD-2024) September 18th, 2024

Content

- Chemical space.
- Natural products in drug development.
- Molecular databases: food chemicals and natural products.
- LANaPDB: Latin American Natural Product Database.
- Summary.
- Outlook.

Chemical space: key concept in chemoinformatics^{*}

A1

A2

An

A1

A2

.

6

An

Coordinate Y

Coordinate Y

Coordinate X

B1

B2

Bn

B1

B2

.

.

Bn

C

C1

C2

Cn

C1

C2

.

.

Cn

M1

M2

Mn

M1

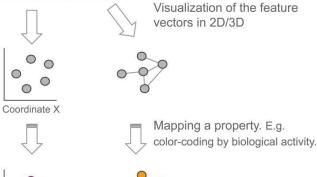
M2

. .

.

Mn

Author(s)	Chemical space definitions	
Varnek and Baskin	The ensemble of graphs or descriptor vectors forms a chemical space in which some relations between the objects must be defined.	Molecule 1 Molecule 2 Molecule <i>n</i>
Lipinski and Hopkins	Chemical space can be viewed as being analogous to cosmological universe in its vastness, with chemical compounds populating space instead of stars.	
Reymond et al.	Ensemble of all known and possible molecules described by their chemical properties.	
Vogt	Comprehensive collection of all possible small molecules under some reasonable restrictions considering size and composition.	

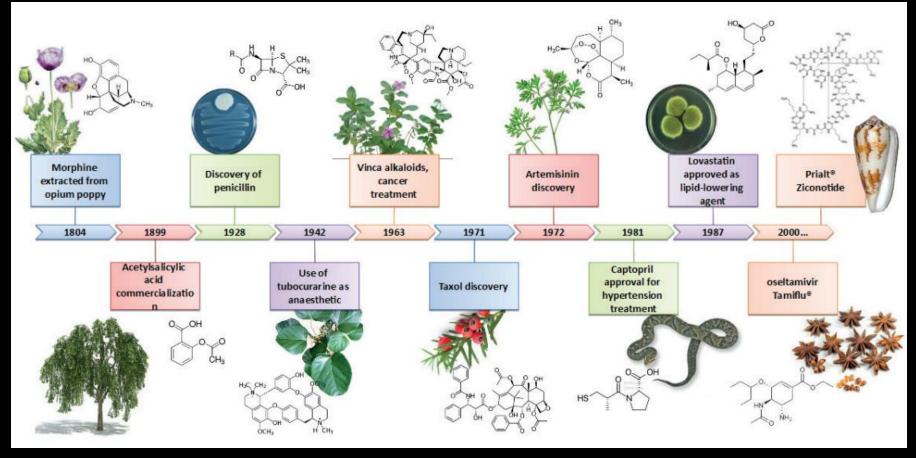

Feature vectors based on a given set of descriptors (M).

Feature vector space: "Chemical space table"

Visualization of the feature

Applications

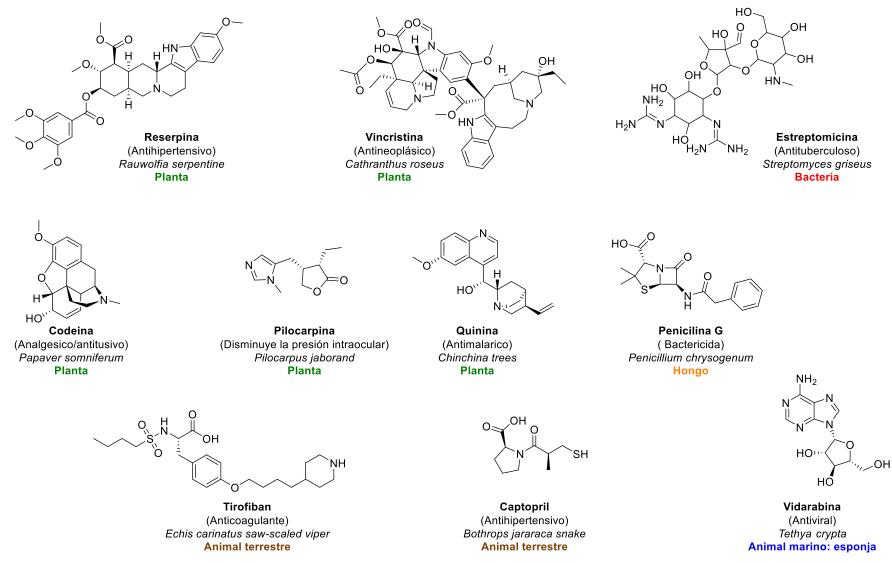
- Structure-property relationships
- Structural diversity analysis
- Library design
- Compound selection



F

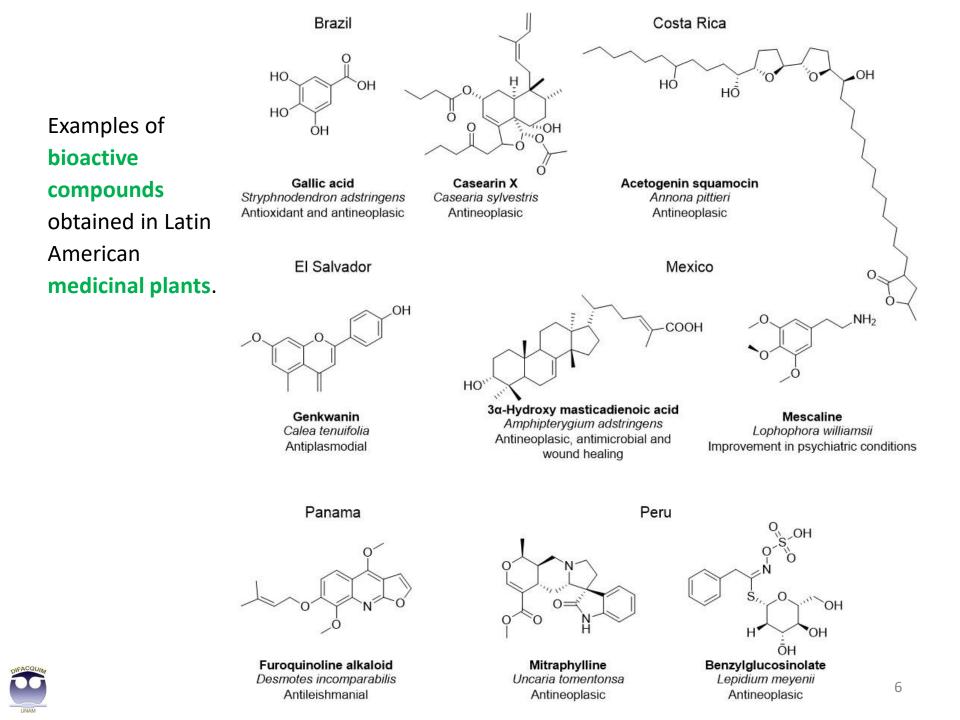
A

A



Valli and Bolzani. Anais da Academia Brasileira de Ciências 2019 91: e20190208

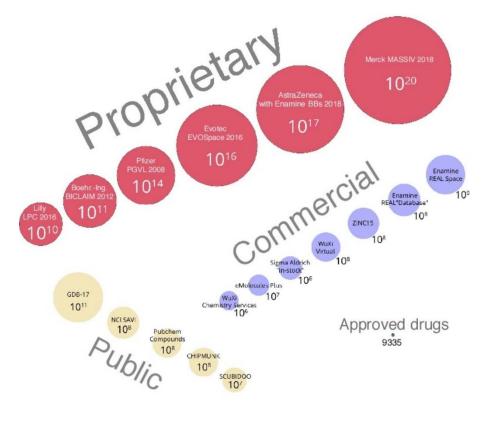
Natural products and databases in drug development


difacquim.com

Natural products as drugs

Atanasov-G, A. et al. Natural products in drug discovery: advances and opportunities. *Nature Rev. Drug Discov.* 2021 20:200-216

Compound collections: types and size

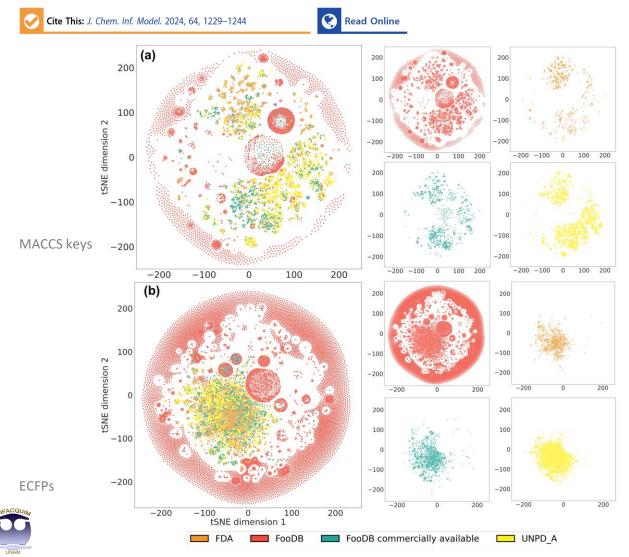

• Commercial: for purchase and testing.

o General screening (diverse libraries).

 \odot Focused on a specific target or indication.

- De novo.
- On-demand.
- Natural products and food chemicals.

Chavez-Hernández AL et al. Front. Drug Discov. 2023 3:1222655

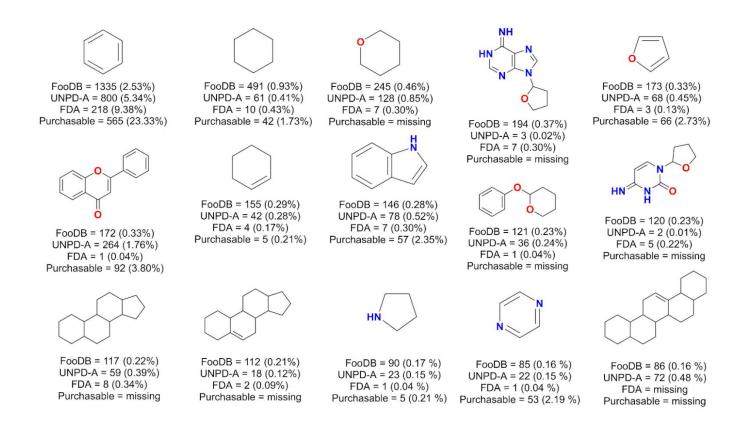


pubs.acs.org/jcim

Chemical Multiverse and Diversity of Food Chemicals

JOURNAL OF CHEMICAL INFORMATION

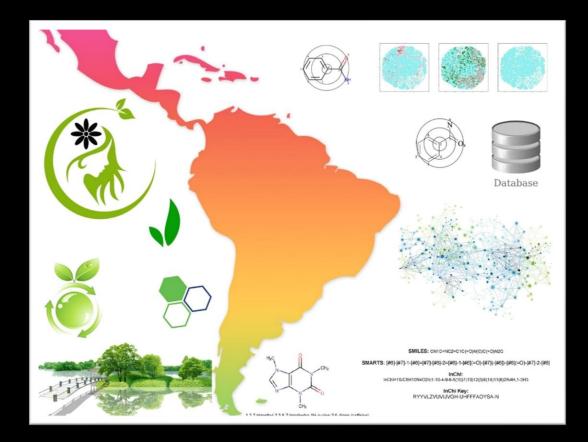
Juan F. Avellaneda-Tamayo, Ana L. Chávez-Hernández, Diana L. Prado-Romero, and José L. Medina-Franco*


Article

~77,000 food chemicals

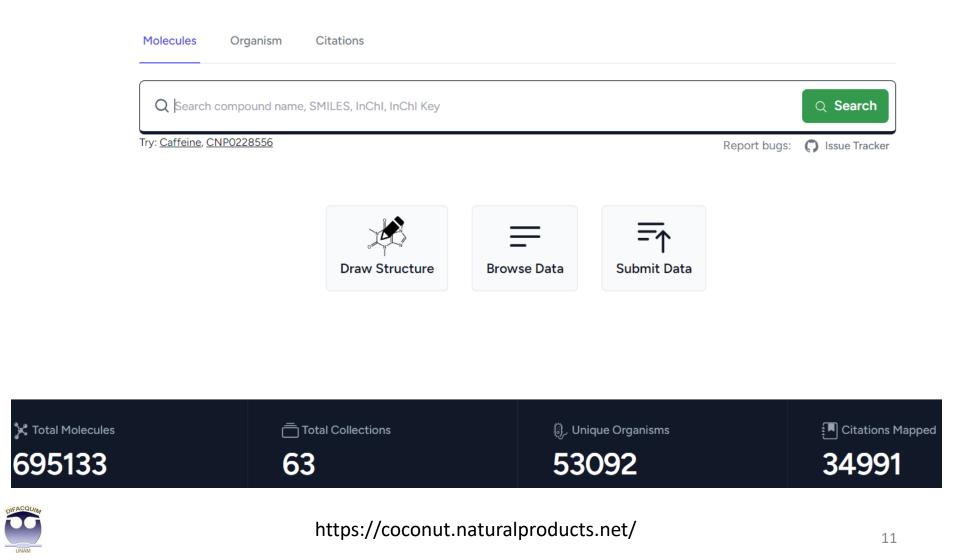
Food chemicals expand the traditional chemical multiverse of bioactive compounds Chemical multiverse:

multiple chemical spaces


Characterization of food chemicals

Fifteen most frequent scaffolds from FooDB and their presence in the four reference (bioactive) data sets: natural products and approved drugs:

Large overlap of bioactive rings.



Natural products databases Contributions from Latin America

difacquim.com

COCONUT: the COlleCtion of Open NatUral producTs

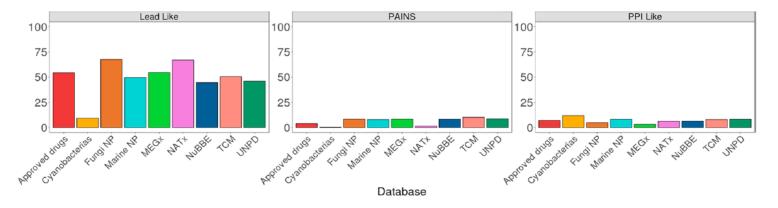
A comprehensive platform facilitating natural product research by providing data, tools, and services for deposition, curation, and reuse.

Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE)

Common Name	Choose an option, or ref	Brasil
Please Choose ~	Family	
Fórmula Molecular	Genus	
	Specie	

- 2223 compounds
- Plants, terrestrial and marine animals; microorganisms
- São Paulo State University;
 University of São Paulo

http://www.nubbe.iq.unesp.br/portal/nubbe-search.html



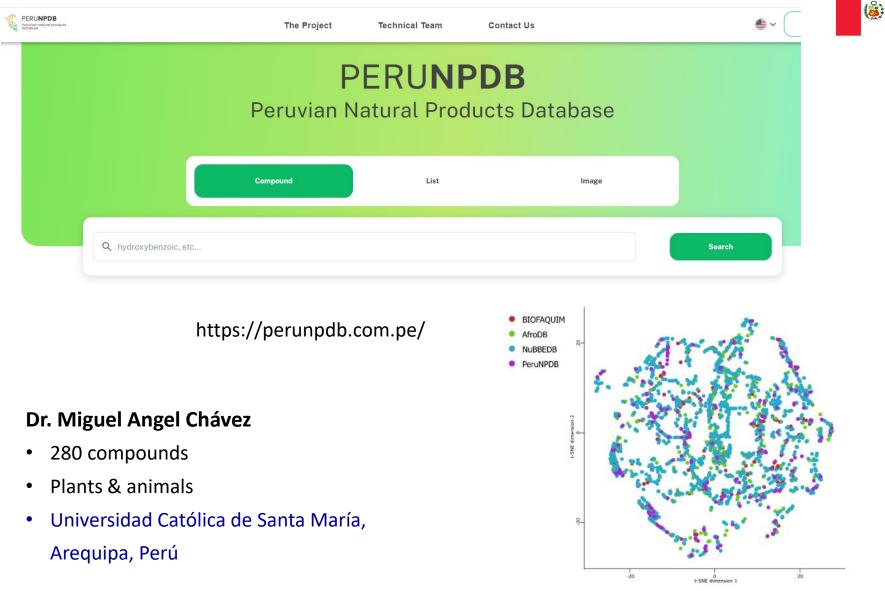
Pilon AC et al. NuBBEDB: An updated database to uncover chemical and biological information from Brazilian biodiversity. *Sci. Rep.* 2017 7:7215

Chemical Space and Diversity of the NuBBE Database: A Chemoinformatic Characterization

Fernanda I. Saldívar-González,[†] Marilia Valli,[‡] Adriano D. Andricopulo,[§] Vanderlan da Silva Bolzani,[‡] and José L. Medina-Franco^{*,†}

Anti-Infective Agents, 2019, 17, 138-149

RESEARCH ARTICLE


New *Trypanosoma cruzi* Trypanothione Reductase Inhibitors Identification using the Virtual Screening in Database of Nucleus Bioassay, Biosynthesis and Ecophysiology (NuBBE)

Nelcí do Carmo Santos¹, Vinícius G. da Paixão¹ and Samuel S. da Rocha Pita^{1,*}

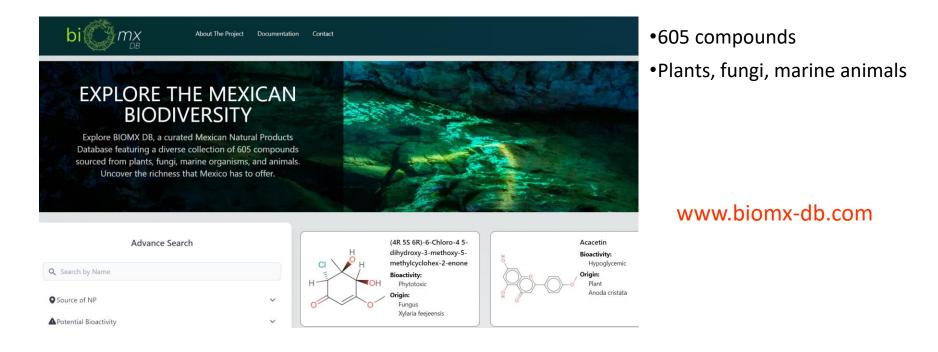
¹Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Pharmacy College, Federal University of Bahia, Salvador-BA, Brazil

PeruNPDB large structural diversity

Barazorda-Ccahuana HL et al. PeruNPDB: The Peruvian Natural Products Database for in silico drug screening. *Sci. Rep.* 2023 13:7577

Received: 16 February 2024 Revised: 23 March 2024 Accepted: 30 March 2024

DOI: 10.1002/minf.202400060


FACO

APPLICATION NOTE

BIOMX-DB: A web application for the BIOFACQUIM natural product database

Fernando Martínez-Urrutia | José L. Medina-Franco 💿

1st version: Pilón-Jiménez BA et al. *Biomolecules* 2019 9:31

Other databases under update and development

About Team

Contact Help How to Cite

Dr. Marcus Tullius Scotti Coordinator Universidad Federal de Paraiba

About
SISTEMAT X Web, an acronym of "SISTEMAT eXtended Webservices", is suite of tools to manage databank of secondary metabolites that is available to consult for entire scientific community, through a "Web" interface. SISTEMAT X Web manages databank of secondary metabolites, including information about the species and respective taxonomy data (genus, tribe, family). Additionally, it is possible to manage physical-chemical properties and experimental data, as NMR spectra or biological activity. The structures of secondary metabolites are available in MDL format (.mol) in 2 dimensions (2D) or (3D).

Costa RPO et al. J. Chem. Inf. Model. 2021: 61 2516-2522

https://sistematx.ufpb.br/

How To Submit Browse About News 🛽

RCNPq

NaturAr, a collaborative, open source, database of natural products from Argentinian biodiversity for drug discovery and bioprospecting

15 July 2024, Version 1

Working Paper

Leandro Martínez-Heredia 🔞 , Patricia Quispe, Julián Fernández 🕲 , Martin Lavecchia 🔞 👘 Hide author details 🔿

Powered by Chemaxon FreeWeb ChemDoodle WEB COMPONENTS BEENEL

How To Submit Browse About News 🗗

PASS PLATO MolPredict

Theoretical and Computational Chemistry

NPDBEjeCol: a natural products database from Colombia

09 August 2024, Version 1

Working Paper

Johny Roberto Rodríguez-Pérez, Hoover Albeiro Valencia-Sanchez ^[5], Oscar Marino Mosquera-Martinez, Alejandro Gómez-García, Jose Luis Medina-Franco ^[5], Hector Fabio Cortes-Hernandez ^[5]

Towards a unified Latin American Natural Products Database: LANaPD

2020 6:FSO468

Towards a unified chemolibrary Latin American Natural Product Database

difacquim.com

Latin American Natural Product Database LANaPDB

Navigating the Chemical Space and Chemical Multiverse of a Unified Latin American Natural Product Database: LANaPDB

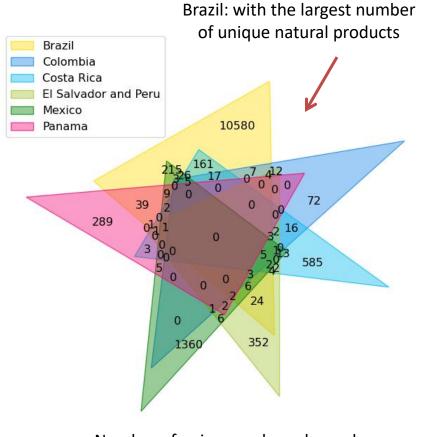
Alejandro Gómez-García ¹⁽⁰⁾, Daniel A. Acuña Jiménez ², William J. Zamora ^{2,3,4}⁽⁰⁾, Haruna L. Barazorda-Ccahuana ⁵⁽⁰⁾, Miguel Á. Chávez-Fumagalli ⁵⁽⁰⁾, Marilia Valli ⁶⁽⁰⁾, Adriano D. Andricopulo ⁶⁽⁰⁾, Vanderlan da S. Bolzani ⁷, Dionisio A. Olmedo ⁸⁽⁰⁾, Pablo N. Solís ⁸⁽⁰⁾, Marvin J. Núñez ⁹⁽⁰⁾, Johny R. Rodríguez Pérez ^{10,11}, Hoover A. Valencia Sánchez ¹⁰⁽⁰⁾, Héctor F. Cortés Hernández ¹⁰⁽⁰⁾ and José L. Medina-Franco ^{1,*}⁽⁰⁾

Latin American Natural Product Database work team

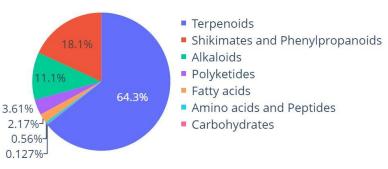
Latin America Databases at LANaPDB (v.2)

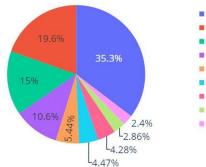
Database	Number of compounds ^a	Country	Source	General description
NuBBEdb	2223	Brazil	Plants Microorganisms Terrestrial animals Marine animals	Natural products of Brazilian biodiversity. Developed by the São Paulo State University and the University of São Paulo.
SistematX	9514	Brazil	Plants	Database composed of secondary metabolites and developed at the Federal University of Paraiba.
UEFS	503	Brazil	Plants	Natural products that have been separately published. Developed at the State University of Feira de Santana.
NPDB EjeCol	200	Colombia	Plants	Natural products and foods from plants in the Eje Cafetero Region. Database from the Technological University of Pereira.
NAPRORE-CR	1600	Costa Rica	Plants Microorganisms	Developed in the University of Costa Rica.
LAIPNUDELSAV	214	El Salvador		Developed by the Research Laboratory in Natural Products of the University of El Salvador.

Latin America Databases at LANaPDB (v.2)


Database	Number of compounds ^a	Country	Source	General description	
UNIIQUIM	1112	Mexico	Plants	Natural products mainly isolated and characterized at the Institute of Chemistry of the National Autonomous University of Mexico.	
BIOFACQUIM	750	Mexico	Plants Fungus Propolis Marine animals	Natural products isolated and characterized in Mexico at the School of Chemistry of the National Autonomous University of Mexico and other Mexican institutions.	
CIFPMA	363	Panama	Plants	Natural products that have been tested in over 25 <i>in vitro</i> and <i>in vivo</i> bioassays, for different therapeutic targets. Developed at the University of Panama.	
PeruNPDB	280	Peru	Animals Plants	Created at the Catholic University of Santa Maria.	

Gómez-González A. et al. *Pharmaceuticals* 2023 16: 1388 Gómez-González A. et al. *Mol. Inf.* 2024 43:e202400052

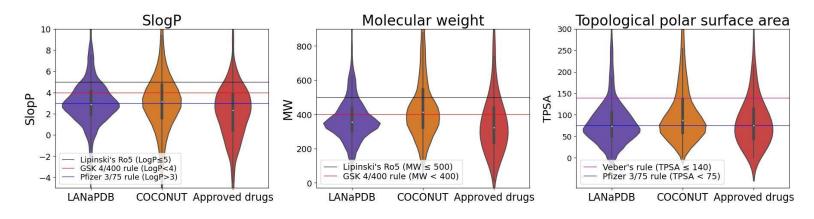

Unique compounds and structure classification


Number of unique and overlapped compounds in LANaPDB.

Terpenoids and diterpenoids are the most abundant

Pathway

SuperClass

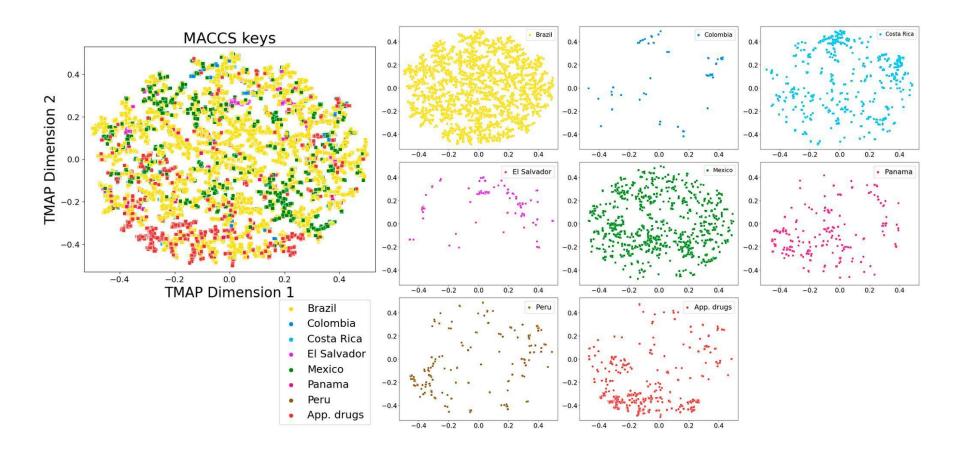


- Diterpenoids
- Sesquiterpenoids
- Others
- Flavonoids
- Triterpenoids
- Tyrosine alkaloids
- Tryptophan alkaloids
- Monoterpenoids
- Lignans

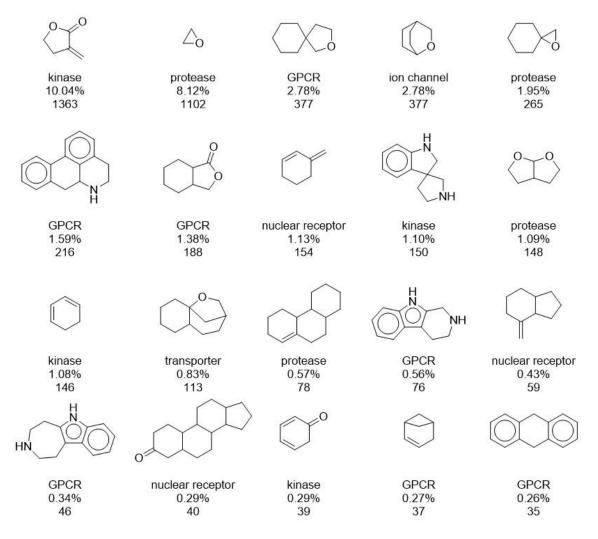


Gómez-González A. et al. in preparation

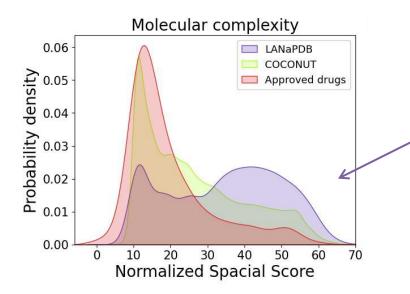
Property profile


LANaPDB has similar profile to COCONUT (and distinct from approved drugs)

Natural products from El Salvador and Panama have distinct property profile.


Visualization of chemical space

Natural products from **Brazil** are the most diverse, followed by **Mexico** and **Costa Rica**.

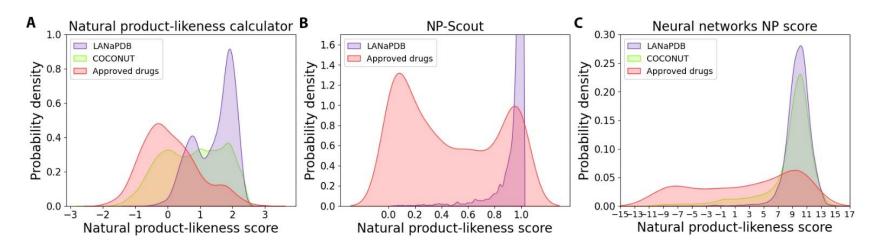

Bioactive ("magic") rings in LANaPDB

The twenty most abundant **bioactive ring systems** in LANaPDB, their biological target and percentage of occurrence.

Molecular complexity

- LANaPDB: large fraction of compounds potentially selective.
- Higher structural complexity than COCONUT.

Krzyzanowski A et al. Spacial Score–A Comprehensive Topological Indicator for Small-Molecule Complexity. J. Med. Chem. 2023 66:12739.


RESEARCH ARTICLE

Updating and profiling the natural product-likeness of Latin American compound libraries

Alejandro Gómez-García¹ Ann-Kathrin Prinz² | Daniel A. Acuña Jiménez³ | William J. Zamora^{3,4,5} | Haruna L. Barazorda-Ccahuana⁶ | Miguel Á. Chávez-Fumagalli⁶ | Marilia Valli⁷ | Adriano D. Andricopulo⁷ | Vanderlan da S. Bolzani⁸ | Dionisio A. Olmedo⁹ | Pablo N. Solís⁹ | Marvin J. Núñez¹⁰ | Johny R. Rodríguez Pérez^{11,12} | Hoover A. Valencia Sánchez¹¹ | Héctor F. Cortés Hernández¹¹ | Oscar M. Mosquera Martinez¹³ | Oliver Koch² | José L. Medina-Franco¹

molecular informatics

- NPLC (Ertl's) distinguishes LANaPDB from COCONUT and approved drugs.
- NP-Scout sharp distinction between databases.
- Neural-network-based score does not distinguish NP collections (based on structural and property descriptors).

Kernel density estimate plots that represent the distribution of the natural product-likeness scores of LANaPDB, COCONUT and approved drugs calculated with: A) Natural product-likeness calculator B) NP-Scout and C) Neural networks NP score.

Gómez-González A. et al. Mol. Inf. 2024 43:e202400052

Summary and outlook

• Natural products and food chemicals expand the bioactive chemical space.

COCONU

- LANaPDB: Ten Latin American databases; 13,580 compounds.
- Open access at https://github.com/alexgoga21/LaNaPDB
- Available in COCONUT (under Collections)
- For each compound:
 - Linear notation.
 - Reference (peer-reviewed paper).
 - Taxonomic and structural classification.
 - Physicochemical properties and chirality.
 - Molecular complexity and synthetic feasibility scores.
 - Commercial availability and bioactivity data.

In progress:

- Physical collection for experimental screening.
- Several virtual screenings vs. multiple endpoints.

Acknowledgements: DIFACQUIM research group Computer-Aided Drug Design at School of Chemistry

Bachelors

Jazmín Miranda

Jimena García

Fernando Martínez

Gabriela Valle Pedro A. Laurel Armando Rufino Osvaldo Sánchez

MSc

Brayan Raziel Massyel S. Martínez Juan F. Avellaneda Daniel Márquez Israel Castañeda Verónica Ramírez www.difacquim.com PhD

Alejandro Gómez

Ana Chávez, PhD Fernanda Saldívar Diana Prado

Edgar López (CINVESTAV) Co-director: Carlos C. Rojas

Postdoctoral fellow Alberto Marbán

Visiting scholars Johny R. Rodríguez (Colombia)

Daniela Quadros (Brazil)

Samuel Homberg (Germany)

Naicolette Agudo (Panama)

Funding

EXTERIORES

medinajl@unam.mx

Free Online event

Jürgen Bajorath

2nd School of Chemoinformatics in Latin America

December 4-6, 2024

Speakers

Haruna Barazorda Miguel Ángel Chávez José Correa Basurto

Patricia Ruiz

William Zamora

Gonzalo Colmenarejo **Kimito Funatsu**

Hanoch Senderowitz

Abraham Madariaga

David Ramírez

Alexander Tropsha

Karina Martinez-Mayorga

https://schoolchilatina.com/

Alan Talevi

Jose Luis Medina-Franco

Fidele Ntie-Kang

UNAM

