XXX Symposium on Bioinformatics and Computer-Aided Drug Discovery

MOLECULAR DOCKING OF SECONDARY METABOLITE COMPOUNDS OF KAWISTA (LIMONIA ACIDISSIMA L.) AS **HUMAN EPIDERMAL GROWTH FACTOR RECEPTOR-2** (HER-2) INHIBITORS

Azka Khoirunnisa, M. Artabah Muchlisin, Aldhenia Amara Rosali, Engrid Juni Astuti, Agustin Rafikayanti

> Department of Pharmacy, Faculty of Health Science University of Muhammadiyah Malang

> > September, 17th 2024

INTRODUCTION

Data from the Global Cancer Observatory (GLOBOCAN) in 2018 shows that breast cancer is the second largest case in the world and the most cases in Indonesia, which is 58,256 cases or 16.7% of the total cancer cases (Ferlay et al., 2018).

Kawista fruit (Limonia acidissima L.) is able to inhibit the proliferation of breast cancer derived from SKBR3 and MDA-MB345 (Pradhan, Tripathy and Patanaik, 2012). Testing with in silico methods to predict the activity of secondary metabolite compounds of L. acidissima against HER2 receptors found in breast cancer

METHODS

Knapsack Family

to search for secondary metabolites of plants

Secondary Metabolite

Ligands in the form of secondary metabolite compounds of L. acidissima plants obtained from the PubChem webserver. then obtained 31 secondary metabolite compounds tested using the SwissADME webserver

Kawista (Limonia acidissima L.)

to determine the bioavailability, affinity and interaction of secondary metabolite compounds of L. acidissima fruit against HER2 receptor in silico

> Dr. Duke's Phytochemical and Ethnobotanical Databases

Dr. Duke's Phytochemical and Ethnobotanical databases

to search for secondary metabolites of plants

Molecular Docking

to see the prediction of affinity and interaction secondary metabolite compounds of L. acidissima against HER-2 target receptor

3PP0

target protein in the form of HER2 receptor obtained from the Protein Data Bank (PDB) webserver. 3PPO is an x-ray protein found in the Protein Data Bank (PDB)

Secondary Metabolite

	No.	Kode	Jumlah	Jumlah Pose	Binding	pKi (Prediksi
Compound Name		Senyawa	Cluster	dalam Cluster Terbesar	Energy (Kkal/Mol)	Konstanta Inhibisi)
7-Methylporiol-Beta-D-Xylopyranosyl-D-Glucopyranoside	1	P1	21	25	-9.84	60.87 nM
Ascorbic-Acid	2	P2	14	27	-3.38	3.34mm
Aurapten	3	P3	19	35	-6.22	27 36 uM
Bergapten	4	1.0	10	31	4.55	461.00
E0 Estragole	4	molZ	12	31	-4.55	461.86µm
	5	mol3	11	61	-9.34	143.57nm
Marmesin	6	mol4	5	61	-6.1	33.61 µm
Orientin	7	mol5	3	78	-8.34	769.04nm
Pectin	8	mol6	4	50	-5.24	144.77 um
Psoralen	9	mol7	4	48	-6.2	28.31 um
Riboflavin	10	mol8	2	00	-7.52	3.08.11m
Stigmasterol	10	11010	2	33	-1.52	5.00 µm
Ursolic-acid	11	moll1	4	67	-0.0	14.63 µm
/Itexin	12	mol16	9	63	-7.23	5 µm
	13	mol17	5	52	-10.16	35.69nm
Integriquinolone	14	mol18	9	38	-5.64	73.66 µm
Dihydroxyacidissiminol	15	mol19	26	28	-10.08	40.97nm
Dihydrosuberenol	16	mol20	7	22	-7.56	2.89 µm
Acidissiminol epoxide	17	mol21	22	22	10.12	29 47nm
Acidissiminol	17	10012-1	23	23	-10.12	30.471111
Acidissiminin epoxide	18	molZZ	17	25	-10.42	23.07nm
Acidissiminin	19	mol25	2	50	-5.12	178.03 µm
Acidissimin	20	mol28	28	17	-6.26	25.84 µm
9°,10°-didenydrodinydroxyacidissiminin 9".10"-Didehydroacidissiminin epoxide	21	mol29	15	26	-6.99	7.52 µm
10,20-Dihydroxyeicosanoic acid	22	mol30	5	86	-7.92	1.58 µm
1-(1H-Indol-3-yl)-3-methyl-2,3-butanediol	23	mol31	3	87	-7.85	1.77 µm

ANALYSIS RESULT

Compound Name	Binding Energy (Kkal/Mol)	Inhibition Constant (Ki)
Acidissiminol	-10.42	23.07nM
Limodissimin A	-10.16	35.69nM
Acidissiminol epoxide	-10.12	38.47nM
Dihydroxyacidissiminol	-10.08	40.97nM
SYR127063	-9.84	60.87nM

Compounds with the Same Binding Energy and Predicted Inhibition Constants or Less than Positive Control

.

С

a

Dihydroxyacidissiminol -Acidissiminol epoxide -Limodissimin A -Acidissiminol -

Visualization of docking results of positive control and secondary metabolite compounds of L. acidissima plant against HER2 receptor (3PP0): (a) SYR127063, (b) Dihydroxyacidissiminol, (c) Acidissiminol epoxide, (d) Limodissimin A,

(e) Acidissiminol

01 Based on the research results obtained, of the 31 secondary metabolite compounds of Limonia acidissima plants, 20 compounds are predicted to have a good bioavailability profile.

03 There are 8 compounds namely aurapten, bergapten, isopimpinellin, marmesin, limodissimin A, intergriquinolone, acidissimin and 10,20-dihydroxyeicosanoic acid which are predicted to have the same interaction with SYR127063 as HER-2 positive breast anticancer.

There are 4 compounds, **02** namely limodissimin A, dihydroxyacidissiminol, acidissiminol and acidissiminol epoxide which are predicted to have potential affinity as HER-2 positive breast anticancer.

THANK YOU FOR YOUR ATTENTION

