LIGAND-PROTEIN BINDING SITE ANNOTATION USING GRAPH NEURAL NETWORKS

<u>A. Ereshchenko</u>, S. Evteev, A. Vyacheslavov, D. Adjugim, A. Malyshev, Ya. Ivanenkov The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, Russia

Purpose of the study

Develop an AI-based method for binding site annotation

Evaluate its effectiveness

Evaluate its application for solving practical tasks:

ligand-protein binding sites classification

➢ ligand-protein affinity prediction

Binding site annotation Model

Binding site annotation Results

Two energy based methods were selected for evaluation

Our predicted classes were grouped in the broader categories of HD, HA and HC

Developed approach showed better or comparable results

MODEL	FRACTION OF CORRECTLY IDENTIFIED ATOMS		
	HD	HA	HC
Our model	0.644	0.792	0.925
AutoSite*	0.657	0.686	0.908
AutoLigand**	0.201	0.447	0.717

Binding site classification Model

Binding site classification Results

Classification accuracy was measured on an independent test

>The example illustrates prediction of properties for BTK active site (PDB ID 8UD2)

Ligand-protein affinity prediction Model

Ligand-protein affinity prediction Results

Developed model showed comparable results with modern GNN approach InteractionGraphNet and significantly outperformed AutoDock Vina

Conclusion

>New approach was developed for binding site annotation

>The developed method was utilized to train models for:

>binding site classification

>small molecule affinity prediction

> Developed solutions demonstrated performance on par with modern solutions