XXX Symposium on Bioinformatics and Computer-Aided Drug Discovery (BCADD-2024)

Oral Presentation

NETWORK PHARMACOLOGY REVEALED THE POTENTIAL OF BITTER HONEY IN SUPPRESSION OF CEREBRAL MALARIA-INDUCED INFLAMMASOME

DANIYAN, Michael Oluwatoyin Department of Pharmacology, Faculty of Pharmacy Obafemi Awolowo University, Ile-Ife, Nigeria mdaniyan@oauife.edu.ng; omdaniyan@gmail.com Human Plasmodium falciparum malaria, is one of the world's leading causes of death

Cerebral malaria (CM) is a fatal complication of *P. falciparum* infection., known to be associated with permanent disabilities and/or deaths, especially among children

INTRODUCTION

CM is associated with functional interplay between many molecular entities, including neurotransmitters and chaperones (Daniyan et al., 2022)

The biological and physiological links between CM, inflammation, and inflammasome, testifies to the complexity of its pathology

Q aniyan

INTRODUCTION

- Natural Products are gaining improved patronage, potential due to:
 - Resistance to available and affordable drugs
 - Worsening economic crisis
 - Affordability and availability
 - Renewed interest in the integration of traditional with orthodox medicine

 Bitter Honey is one of the focal point due to its inherent biological properties

INTRODUCTION

Previous work from our teams on the medicinal properties of bitter honey has established the following:

- Botanical and bioactive markers,
- Inhibitory effects on pancreatic alpha-amylase activity
- Anti-dyslipidaemia, cardio-protective, and ameliorative effects on hepatorenal damage in experimental diabetic rats.

(Adeoye et al., 2022b, 2022a, 2022c, 2023)

RESULTS AND DISCUSSION

- BH Bitter Honey Phytochemicals
- CM Cerebral Malaria
- Ifs Inflammasome Ifn – Inflammation II – Ifn-Ifs

Protein-Protein Interaction Analysis

- NLRP3 was included as functional control
- Interactions are both functional and physical
- The PPI Interactions:
 - 29 (p = 2.64 e-08)
 - 38 with NLRP3 (p = 1.05e-11)

	1	Numerical F	requen	cies	Percentage of Occurrence							
Conos	Witho	ut NLRP3	With	NLRP3	Withou	t NLRP3	With NLRP3					
Genes			BIO	LOGICAL	FUNCT	IONS						
	All	Similar	All	Similar	All	Similar	All	Similar				
ADORA2A	79	70	84	70	54.11	52.24	51.85	52.24				
C5AR1	88	81	100	81	60.27	60.45	61.73	60.45				
FCGR1A	40	38	46	38	27.4	28.36	28.4	28.36				
ITGB2	79	74	87	74	54.11	55.22	53.7	55.22				
NOS2	67	65	79	65	45.89	48.51	48.77	48.51				
PTGS2	104	95	112	95	71.23	70.9	69.14	70.9				
STAT3	103	95	112	95	70.55	70.9	69.14	70.9				
VEGFA	98	88	102	88	67.12	65.67	62.96	65.67				
VDR	57	54	63	54	39.04	40.3	38.89	40.3				
NLRP3*	_		87	58		_	53.7	43.28				
TOTAL	146	134	162	162 134								
BF												
	KEGG PATHWAYS											
	All	Best 20	All	Best 20	All	Best 20	All	Best 20				
ADORA2A	7	2	7	2	7.07	10	7.07	10				
C5AR1	6	3	6	3	6.06	15	6.06	15				
FCGR1A	11	5	11	5	11.11	25	11.11	25				
ITGB2	19	8	19	8	19.19	40	19.19	40				
NOS2	19	7	19	7	19.19	35	19.19	35				
PTGS2	21	7	21	7	21.21	35	21.21	35				
STAT3	32	9	32	9	32.32	45	32.32	45				
VDR	5	2	5	2	5.05	10	5.05	10				
VEGFA	23	12	23	12	23.23	60	23.23	60				
NLRP3*			5	1			5.21	5				
TOTAL KEGG	96	20	96	20								

RP3 Analysis of genes association with without 10 Hunctions 10 WITH Biological Pathwa

Consensus Genes Association with Biological Functions											
Number of Consensus Genes	Number of Associated BF	Number of Associated BF with NLRP3 Association	% NLRP3 Association								
9	8	8	100								
8	14	11	78.57								
7	13	8	61.54								
6	15	8	53.33								
5	17	10	58.82								
4	23	8	34.78								
3	21	4	19.05								
2	23	0	0								
Cor	nsensus Genes Associa	tion with KEGG Pathwa	ys								
Number of Consensus Genes	Number of Associated KEGG Pathways	Number of Associated KEGG Pathways with NLRP3 Association	% NLRP3 Association								
4	3	0	0								
3	9	0	0								
2	20	2	10								
1	64	3	4.69								
0	0	6	0								

Therefore, it does appear that the presence of NLRP3 does not alter the target gene association in KEGG pathways.

Biological Functions that show association with all the consensus genes and NLRP3

S/No.	Biological Functions	Target Genes	P value	FDR	
1	Positive regulation of the cellular process	ALL	1.25E-05	0.0029	
2	Regulation of catalytic activity	ALL	6.06E-09	7.79E-05	
3	Regulation of cellular metabolic process	ALL	3.42E-05	0.0055	
4	Regulation of macromolecule metabolic process	ALL	4.35E-05	0.0065	
5	Regulation of nitrogen compound metabolic process	ALL	1.88E-05	0.0040	
6	Regulation of primary metabolic process	ALL	2.53E-05	0.0048	
7	Response to organic substance	ALL	4.90E-08	0.00012	
8	Signal transduction	ALL	3.73E-06	0.0013	

ALL = ADORA2A, C5AR1, FCGR1A, ITGB2, NOS2, PTGS2, STAT3, VDR, VEGFA, and NLRP3

Enrichment Analysis and hierarchical clustering

Except for the replacement of Rheumatoid arthritis with COVID-19, the inclusion of NLRP3 did not significantly alter the KEGG enrichment

Network Analysis with Cytoscape (CytoHubba plugin)

- The consensus analysis of CytoHubba 12 scoring functions:
 - Identified 6 hub genes ranked (in parenthesis) as follows:
 - STAT3 (1), ITGB2 (2), FCGR1A (3), C5AR1 (4), PTGS2 (5), and NOS2 (6) when analyzed without NLRP3,
 - STAT3 (1), PTGS2 (2), C5AR1 (3), FCGR1A (4), NLRP3 (5), ITGB2 (6), and NOS2 (7) when analyzed with NLRP3

Identification of the most Promising BH Phytochemicals

• The top 10 phytochemicals by docking, rescoring and consensus analysis.

PHYTOCHEMICALS			FCGR1A	ITGB2	NLRP3	NOS2	PTGS2	STAT3		VEGFA	Average		
		C5AR1							VDR		Score	Rank	
Ergosta-5,22-dien-3-ol	1	1	1	3	1	2	3	2	6	2	2.2	1	
Friedelan-3-one	4	2	2	1	2	4	1	3	7	1	2.6	2	
Alpha-Amyrin	7	3	3	1	3	3	1	4	13	3	4.3	3	
Aciphyllene		4	6	7	6	6	4	5	11	4	5.6	4	
(E)-2-bromobutyloxychalcone	5	5	4	17	5	5	5	11	2	8	6.7	5	
Beta-Guaiene	б	9	7	4	10	8	6	9	4	5	6.8	б	
5-Acetamido-4,7-dioxo-4,7-dihydrobenzofurazan	15	10	5	4	8	11	8	б	7	б	8	7	
Octahydronaphthalene	9	5	8	7	11	10	7	11	5	9	8.2	8	
aR-Turmerone	7	7	9	9	8	9	9	14	10	7	8.9	9	
1H-Cyclopropa[a]naphthalene	10	7	10	14	7	7	10	11	14	10	10	10	
Control (Co-crystalized ligand)	2	25	19	12	4	1	25	1	1	24			

Identification of the most Promising BH Phytochemicals

 They showed good ADMET properties
The top 3 (Ergosta-5,22-dien-3-ol, Friedelan-3-one, and Alpha-Amyrin) revealed a high probability for:

- intestinal absorption,

- CNS and BBB permeability,
- very low potential for toxicity, and
- shared similar structural backbones

Identification of the most Promising BH Phytochemicals

Dhytochomicals	Lipinski	Excretion	Pgn		Permeability						Donk		
rnytochemicais			INH	SUB	Caco2	$\mathbf{I}^{\#}$	Skin	CNS	BBB	DILI	Ames	C*	Канк
Ergosta-5,22-dien-3-ol	YES	Moderate	0.064	0.001	1.213	94.515	-2.819	-1.719	0.857	0.114	0.03	0.047	1
Friedelan-3-one	YES	High	0.086	0	1.236	97.452	-2.722	-1.471	0.484	0.022	0.038	0.012	2
Alpha-Amyrin	YES	High	0.181	0	1.327	94.156	-2.811	-1.809	0.762	0.012	0.011	0.017	3
Aciphyllene	YES	Moderate	0.2	0	1.408	94.084	-1.518	-2.182	0.884	0.394	0.015	0.602	4
(E)-2-bromobutyloxychalcone	YES	Low	0.991	0.001	1.288	93.522	-2.654	-1.382	0.109	0.745	0.653	0.744	5
Beta-Guaiene	YES	Moderate	0.922	0.001	1.416	94.704	-1.596	-2.149	0.377	0.729	0.011	0.583	6
5-Acetamido-4,7-dioxo-4,7- dihydrobenzofurazan	YES	Low	0.247	0.001	0.133	78.303	-2.88	-3.199	0.982	0.992	0.95	0.943	7
Octahydronaphthalene	YES	High	0.002	0	1.415	94.484	- 1.434	-1.858	0.89	0.045	0.011	0.77	8
aR-Turmerone	YES	Moderate	0.766	0.002	1.667	95.352	-1.377	-1.707	0.202	0.259	0.015	0.475	9
1H-Cyclopropa[a]naphthalene	YES	Moderate	0.024	0.008	1.591	95.848	-1.728	-1.292	0.845	0.879	0.873	0.881	10

Pgn is P-glycoproteins INH is Inhibitor; SUB is Substrate; I[#] is Intestinal; CNS is Central Nervous System BBB is Blood Brain Barrier; DILI is Drug-induced Liver Injury; C* is Carcinogenicity. Pgn (INH and SUB), BBB, and Toxicity (DILI, Ames, and C*) are rated on a scale of probability of 0 (NO) to 1 (YES). Caco2 > 0.90, Intestinal > 90%, skin < -2.50, and CNS > -2 are regarded as great.

19

he interaction analysis revealed ? <mark>0</mark> D eraction 0 <mark>0</mark> **N** ဂို **?** 0 d) 0 3 0 0 one, Ō $\overline{\mathbf{n}}$ <mark>osta-5</mark> eins the õ

9/18/2024

20

CONCLUSION

The study has been able to:

Identified some biologically relevant phytochemicals from Bitter Honeys

Identified nine (9) BH-CM-II associated genes as potential targets of BH derived phytochemicals

Identified three (3) promising phytochemicals for further exploration and validation

Predict that BH has potential to suppress inflammasomemediated cell death in cerebral malaria

SELECTED REFERENCES

- Adeoye, B. O., Ayobola, I., Daniyan, M., Victor O, E., David, A., Abijo, A., et al. (2022a). Ameliorative effects of Nigerian bitter honey on streptozotocin-induced hepatorenal damage in Wistar rats. *Journal of Krishna Institute of Medical Sciences University* 11, 65–76.
- Adeoye, B. O., Iyanda, A. A., Daniyan, M. O., Adeoye, A. D., Oyerinde, A. M., and Olatinwo, G. O. (2022b). Botanical and Bio-active Markers of Nigerian Bitter Honey. *Tropical Journal of Natural Product Research (TJNPR)* 6, 1848– 1853.
- Adeoye, B. O., Iyanda, A. A., Daniyan, M. O., Adeoye, D. A., Olajide, O. L., Akinnawo, O. O., et al. (2023). Anti-dyslipidaemia and cardio-protective effects of nigerian bitter honey in streptozotocin induced diabetic rats. *Univ J Pharm Res.* doi: 10.22270/ujpr.v8i2.920
- Adeoye, B. O., Iyanda, A., Michael, O., Oyebimpe, O., and Fadeyi, B. (2022c). Inhibitory effects of Nigerian Sweet and Bitter Honey on Pancreatic Alpha Amylase Activity. *Nigerian Journal of Nutritional Sciences* 43, 19–24.

SELECTED REFERENCES

- Daniyan, M. O., Fisusi, F. A., and Adeoye, O. B. (2022). Neurotransmitters and molecular chaperones interactions in cerebral malaria: Is there a missing link? *Frontiers in Molecular Biosciences* 9. doi: https://doi.org/10.3389/fmolb.2022.965569
- Daniyan, M. O., and Ojo, O. T. (2019). In silico identification and evaluation of potential interaction of Azadirachta indica phytochemicals with Plasmodium falciparum heat shock protein 90. *Journal of Molecular Graphics and Modelling* 87, 144–164. doi: 10.1016/j.jmgm.2018.11.017
- Tsuchiya, K. (2020). Inflammasome-associated cell death: Pyroptosis, apoptosis, and physiological implications. *Microbiology and Immunology* 64, 252–269. doi: 10.1111/1348-0421.12771
- World Health Organization (2023). World malaria report 2023. Available at: https://www.who.int/publications-detail-redirect/9789240086173 (Accessed February 10, 2024).

THANK YOU