

Square Antiprism is a Key Determinant for Potassium Ion Selectivity

Kirill Scherbakov, Alexander Vassilevski, Anton Chugunov

0. Introduction

Types of Lon Channels Neurotransmitter Na⁺ Open Na⁺ Closed

Ion Channels Families

- Ligand-gated
 - Serotonin (5-HT₃R)
 - Acid-sensing (ASIC)
 - Epithelial sodium channel (ENaC)
 - GABA_A receptors
 - Glycine receptors
 - Glutamate receptors
 - Nicotinic acetylcholine receptors
 - ATP receptors (P2X)
- Voltage-gated
- Other
 - Aquaporins
 - Chloride

0. Introduction

A Unique Potassium Channel

- Selectivity up to 10⁴
- Rapid conductance (10⁸ K⁺/s), close to a diffusion limit
- Electrostatic knock-on mechanism of conduction: K⁺ ions come one after the other, interspersed by H₂O molecules
- Time of ion passage is <1 μs, thus MD modeling may be applied

Potassium Channel Structure (KcsA)

Selective Filter is a "Quasi-Water"

1998 2003 Science Chemistry MacKinnon .⊆ Prize Nobel Doyle

- SF: just 12 Å for potential to drop
- There are four SF sites, which are (probably) occupied by K⁺ over one (others contain H₂O)
- K⁺ come one after the other (two ions in SF at a time)
- 7.5 Å \rightarrow 4 M KCl (!)
- Hydrophobic gating

Origin of Selectivity

- K⁺-Channels conduct potassium at that high rate and selectivity because carbonyl oxygens layers in the SF form a rotated quads that perfectly copy a square antiprism of the solvated K⁺ ion
- K⁺ desolvates completely without any energy penalty
- There are several K⁺-binding sites in the SF (4+2), but just two are occupied at the same time
- Upcoming K⁺ electrostatically pushes another ion from the SF — a "knock-on" mechanism ("soft", "hard")
- Sodium (Na⁺), apart being smaller:
 - does not come into SF
 - Cannot desolvate without a penalty (since the channel is optimized for K⁺)

In this talk:

- 0. Introduction
- 1. An algorithm to seek K⁺-binding sites in proteins
- 2. K⁺ Selectivity filter: unique and conserved for all K⁺-channels
- 3. Yes we can distinguish active and inactivated SF in K⁺-channels by antiprismatic match
- 4. K⁺-binding sites in other (membrane) proteins
- 5. Small differences for other K⁺-binding proteins explain lack of selectivity and other features

1. The algorithm

Four KcsA Sites Found at Their Best

...and found that structures described as active (conductive) mostly exhibit 3-4 sites, while (deeply) inactivated may contain 0–2

- RMSD cut-off for antiprismatic match was chosen
- For structure to be active, it must feature at least three (S1–S3) K⁺-binding sites
- S4 has higher RMSD and is not affected by (in)activation
- This prediction method is rather precise:
 - TPR = 0.99
 - TNR = 0.80

RMSD Cut-off of 1.25 Å at S1–S3 Sites Clearly Distinguish Active and Inactive SFs

All three S1–S3 have to match to square antiprismatic template for SF to be active

4. Other (membrane) proteins

Only K⁺-transport Proteins Have Many Precise K+-Binding Sites

These proteins include:

- K⁺-channels (discussed earlier)
- K⁺-transporters
- NaK channels
- CNG channels
- HCN channels

A: K+-transporter

T114

G113

T112

T111

T110

A115

G67

D66

G65

V64

T63

T324

F323

G322

A320

T320

In contrast to K⁺-channels, these proteins possess only one or two K⁺-binding sites, leading to significantly lower K⁺ selectivity

S1

S.

SB

Conclusions

- The SF is a unique structure persisting in K⁺-channels and some related proteins (K⁺-transporters and NaK, CNG, and HCN channels) in a highly conserved form, but it is absent from other proteins.
- 2. Conductive and non-conductive SFs may be clearly delineated by a 1.25 Å RMSD threshold at sites S1–S3 the way for geometric assessment of the functional state of SFs.
- 3. Antiprismatic sites are found in different channel domains and other membrane as well as nonmembrane proteins, where they may be of functional significance.

Thanks for the attention!

