Chemometrics modeling, inverse docking and molecular simulations-driven design and multi-layered prioritization lead identification of novel analogs based on 2aminobenzimidazole scaffolds for addressing Leishmaniasis

Presented

by

Arpita Biswas

PhD Research Scholar

Dept of Pharm Tech

Jadavpur University, Kolkata-700032

Under the guidance of

Dr. Probir Kumar Ojha

Associate Professor

Dept. Of Pharm. Tech

Jadavpur University, Kolkata-700032

DDD LAB

Drug Discovery and Development Laboratory

It's a Threat to the mankind

Theme of 2023 NTD is-"Act Now. Act **Together. Invest in Neglected Tropical Disease**"

- Kala-azar (visceral leishmaniasis)-fatal if • untreated, Fig: 1.
- Causes: Protozoan parasites which are ٠ transmitted by the bite of infected female phlebotomine sand-flies.
- Very limited no. of drugs available in the ٠ market.
- Having good extent of toxicity. ۲
- Huge population gets affected.

lifecycle Flowchart of of the parasite.(Amastigotes and Promastigotes), Fig: 2

Objective

- Design of new compounds with 2-aminobenzimidazole scaffold to counteract NTD endemic diseases. ۲
- Development of QSAR-regression based predictive models which correlates biological activity with chemicals of molecular • structure represented as descriptors is aimed to develop through various statistical approaches.
- Validation of developed models using globally accepted internal and external validation parameters. •
- Screening of drugbank compounds using the validated model to develop new chemical compound with least toxicity against • leishmaniasis

Results and discussion

PLS Model

Statistical parameters of the model is mentioned in the tabular form as Table:1

 $\underline{\underline{PIC}}_{50}$ $1.41855 + 2.53073 * Eta_F_A - 0.61002 * B10[C - N] + 0.08752 * F03[C - N]$ + 0.29798 * F06[N - F]

Table:1

Model		Training set(n=35)			Test set(n=12)				
	LV	<i>R</i> ²	$Q^2_{(LOO)}$	r_m^2 (LOO)	MAE _(LOO)	Q^2_{F1}	Q^2_{F2}	r_m^2 (test)	$\Delta r m^2$ (test)
PLS	2	0.688	0.611	0.497	0.240	0.735	0.698	0.525	0.235

CCC	MAE
0.800	0.211

Descriptors Contribution

4 Descriptors are found to have contribution towards developed model:

Compound 10 B10[C-N] = 1♠ pIC₅₀ = 4.244♥

Compound 44 F06[N-F] = 0 ↓ pIC₅₀ = 4.244↓

PLS PLOT

Regression coefficient plot

VIP plot

Fig: 5

Fig: 8

100 permutations 2 components

DModX plot (test set)

M1-D-Crit[2] = 2.988

DModX plot (training set)

Fig: 9

Fig: 11

R2 Q2

Step-wise generation of Lead Analog against leishmaniasis

- The PLS Model generated was used to screen the DrugBank compounds based on AD.
- The compounds obtained again screened using R05 violation.
- The screened compounds now subjected to molecular docking using 15 targeted proteins.
- The docking results shows that the best binding score was obtained against TR.
- The screened compounds were assessed for their localization within the binding site of 15 putative protein targets to prioritize leads compounds based on their binding affinity.
- Inverse Docking, a tabular form of presented with target proteins against leishmaniasis, represented as, Table:2

Target Proteins	Highest Binding score
TR	-6.58
AdoMetDC	-6.45
ARG	-5.95
FPS	-6.37
GspS	-6.40
NDkb	-6.49
ODC	-6.40
OPB	-6.42
S14D	-6.31
S24CM	-6.09
SpdS	-6.45
SS	-6.47
TS	-6.45
TXN	-6.47
TXNPx	-5.12

- 124 Compounds were found with highest dock score exceeding experimental TR inhibitor with TRL190
- Considering binding energy, top 5 leads against TR was identified, as mentioned on the table below., Table:3
- Positively correlated features escalating TR inhibitory activity obtained from QSAR study incorporated rationally to the generation of analogs.
- Thus resulting in 17 Analogs generation.

Table:	3	

DrugBank ID	Binding energy
DB12269	-6.58185
DB01705	-6.38635
DB12457	-6.32147
DB03231	-6.0676
DB04260	-6.01953
MWW	-4.70903

90 Table:3 d rationally to the

Structures of 17 Analogs with 5 Lead Compounds

Fig: 12

Flowchart to Lead Analog compound generation

DB12269-A4 (E)

Depiction of Binding score of parent lead and their derivatives along with the Table: 4 binding pose and 2D interaction (Fig:14)

(B1) 2D protein-ligand interactions as traced in DB03231-A6

(C) 2D protein-ligand interactions as traced in DB12269 (C1) 2D protein-ligand

(B) 2D protein-ligand interactions as traced in DB03231

(C1) 2D protein-ligand interactions as traced in DB12269-A4

ADMET STUDY

Table: 5

Property / Parameter / Endpoint	DB12269-A4	DB03231-A6	
Water solubility (log mol/L)	-2.989	-2.907	
Caco2 permeability (log Papp in 10 ⁻⁶ cm/s)	0.936	0.962	
Intestinal absorption (% Absorbed)(human)	75.855	46.7	
Skin Permeability (log Kp)	-2.735	-2.735	
Hepatotoxicity	0.52	0.52	
Carcinogenicity	0.59	0.63	
Mutagenicity	0.64	0.55	
Cytotoxicity	0.72	0.72	
Predicted LD50 (mg/kg)	2500	2000	
Toxicity Class	5	4	

Analysis of Ca RMSD

The top-docked poses of DB03231-A6 and DB12269-A4 in complex with Trypanothione reductase underwent MDS and were analysed to found the best Analog compound through RMSD and RMSF analysis

DB12269-TR

- The RMSD mean of the C α atoms in the DB03231-A6-TR and DB12269-A4-TR complexes were significantly lower (3.04Å and 2.81Å, respectively) compared to the apo-TR form (3.77 Å).
- RMSD trajectories were consistent up to 177ns, after which DB03231-A6-TR exhibited more fluctuations than DB12269-A4-TR.
- Beyond 100ns, the apo-TR showed reduced fluctuations with a maximum RMSD difference of 1.40Å.
- DB12269-A4-TR demonstrated even lower fluctuations (0.78Å), while DB03231-A6-TR exhibited fluctuations (1.45Å) comparable to those observed in the apo-TR form.

Fig: 15(C) Protein-ligand RMSD of DB12269-A4

Analysis of Protein Ligand RMSD

- Superior stability of DB12269-A4 at the binding site was observed throughout the simulations.
- The average RMSD difference relative to TR was notably higher for DB03231-A6 (2.91Å) compared to DB12269-A4 (1.15Å),
- After 179 ns, DB03231-A6 exhibited significant fluctuations, although the protein-ligand trajectory converged towards the end of the simulation.
- Conversely, the ligand trajectory of DB12269-A4 did not overlap with the TR trajectory; however, the ligand distance from the binding site remained within the acceptable range (<3.5Å).

Analysis of protein ligand RMSF

Analysis of protein-ligand contacts For DB122269-A4

Fig: 17 (B) Interactions and contacts

Analysis of protein-ligand contacts For DB03231-A6

of contacts

Fig: 18 (A)Ligand atom interactions with the protein residues

Fig: 18 (B) Interactions and contacts

Fig: 18 (C) Type of interactions with ligand

- DB03231-A6 complex, the nitrogen atom and the attached amine group of the 5-amino-[1,2,3]triazolo[4,5-d]pyrimidin-7-one moiety.
- Formed hydrogen bonds with Asp116 for 34% and 53% of the simulation time, respectively.

Conclusion

- From QSAR model development the structural features revealed that descriptors like F03[C-N], F06[N-F], and Eta F A contributes positively in designing the structure and presence of B10[C-N] significantly reduces the efficacy of the compound designed.
- The developed model was deployed to reliably screen 12557 DrugBank compounds which enabled identification of the top five lead compounds i.e. DB12269, DB03231, DB01705, DB04260 and DB12457.
- The current study effectively utilizes simple, interpretable 2D molecular descriptors in QSAR modeling to predict TR inhibitory activity of 2-aminobenzimidazole derivatives with prospective lead modification.
- Positive descriptor features were incorporated and negative features were reduced to further potentiate the screened leads, resulting in the generation of 17 lead analogs.
- Finally through multi-layered screening involving inverse molecular docking and molecular dynamics revealed DB12269-A4 as the most promising TR inhibitor for leishmaniasis.

- Ghosh, V., Bhattacharjee, A., Kumar, A. and Ojha, P.K., 2024. q-RASTR modelling for prediction of diverse toxic chemicals towards T. pyriformis. SAR and QSAR in Environmental Research, 35(1), pp.11-30.
- Roy, K., Kar, S. and Das, R.N., 2015. Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic press.
- Lipinski, C.A., 2004. Lead-and drug-like compounds: the revolution. rule-of-five Technologies, 1(4), pp.337-341.
- Finally through multi-layered screening involving inverse molecular docking and molecular dynamics revealed DB12269-A4 as the most promising TR inhibitor for leishmaniasis.
- Podder, T., Kumar, A., Bhattacharjee, A. and Ojha, P.K., 2023. Exploring regression-based QSTR and i-QSTR modeling for ecotoxicity prediction of diverse pesticides on multiple avian species. Environmental Science: Advances, 2(10), pp.1399-1422.

References

Drug today: discovery

THA NK YOU....